Datasets:
File size: 5,073 Bytes
4001853 46b2657 4001853 c99ed59 4001853 1b46bea 4001853 1b46bea 4001853 01e4c7c 4001853 1b46bea 4001853 1b46bea 4001853 1b46bea 4001853 1b46bea 4001853 1b46bea 4001853 5db2916 4001853 95a293e 10c7bb0 4001853 46b2657 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
---
task_categories:
- robotics
language:
- en
tags:
- RDT
- rdt
- RDT 2
- manipulation
- bimanual
- ur5e
- webdatset
- vision-language-action
license: apache-2.0
---
## Dataset Summary
This dataset provides shards in the **WebDataset** format for fine-tuning [RDT-2](https://rdt-robotics.github.io/rdt2/) or other policy models on **bimanual manipulation**.
Each sample packs:
* a **binocular RGB image** (left + right wrist cameras concatenated horizontally)
* a **relative action chunk** (continuous control, 0.8s, 30Hz)
* a **discrete action token sequence** (e.g., from an [Residual VQ action tokenizer](https://huggingface.co/robotics-diffusion-transformer/RVQActionTokenizer))
* a **metadata JSON** with an instruction key `sub_task_instruction_key` to index corresponding instruction from `instructions.json`
Data were collected on a **bimanual UR5e** setup.
---
## Supported Tasks
* **Instruction-conditioned bimanual manipulation**, including:
- Pouring water: different water bottles and cups
- Cleaning the desktop: different dustpans and paper balls
- Folding towels: towels of different sizes and colors
- Stacking cups: cups of different sizes and colors
---
## Data Structure
### Shard layout
Shards are named `shard-*.tar`. Inside each shard:
```
shard-000000.tar
βββ 0.image.jpg # binocular RGB, H=384, W=768, C=3, uint8
βββ 0.action.npy # relative actions, shape (24, 20), float32
βββ 0.action_token.npy # action tokens, shape (27,), int16 β [0, 1024)
βββ 0.meta.json # metadata; includes "sub_task_instruction_key"
βββ 1.image.jpg
βββ 1.action.npy
βββ 1.action_token.npy
βββ 1.meta.json
βββ ...
shard-000001.tar
shard-000002.tar
...
```
> **Image:** binocular wrist cameras concatenated horizontally β `np.ndarray` of shape `(384, 768, 3)` with `dtype=uint8` (stored as JPEG).
>
> **Action (continuous):** `np.ndarray` of shape `(24, 20)`, `dtype=float32` (24-step chunk, 20-D control).
>
> **Action tokens (discrete):** `np.ndarray` of shape `(27,)`, `dtype=int16`, values in `[0, 1024]`.
>
> **Metadata:** `meta.json` contains at least `sub_task_instruction_key` pointing to an entry in top-level `instructions.json`.
---
## Example Data Instance
```json
{
"image": "0.image.jpg",
"action": "0.action.npy",
"action_token": "0.action_token.npy",
"meta": {
"sub_task_instruction_key": "fold_cloth_step_3"
}
}
```
---
## How to Use
### 1) Official Guidelines to fine-tune RDT 2 series
Use the example [scripts](https://github.com/thu-ml/RDT2/blob/cf71b69927f726426c928293e37c63c4881b0165/data/utils.py#L48) and [guidelines](https://github.com/thu-ml/RDT2/blob/cf71b69927f726426c928293e37c63c4881b0165/data/utils.py#L48):
### 2) Minimal Loading example
```python
import os
import glob
import json
import random
import webdataset as wds
def no_split(src):
yield from src
def get_train_dataset(shards_dir):
shards = sorted(glob.glob(os.path.join(shards_dir, "shard-*.tar")))
random.shuffle(shards)
num_workers = wds.utils.pytorch_worker_info()[-1]
workersplitter = wds.split_by_worker if len(shards) > num_workers else no_split
assert shards, f"No shards under {shards_dir}"
dataset = (
wds.WebDataset(
shards,
shardshuffle=False,
nodesplitter=no_split,
workersplitter=workersplitter,
resampled=True,
)
.repeat()
.shuffle(8192, initial=8192)
.decode("pil")
.map(
lambda sample: {
"image": sample["image.jpg"],
"action_token": sample["action_token.npy"],
"meta": sample["meta.json"],
}
)
.with_epoch(nsamples=(2048 * 30 * 60 * 60)) # 2048 hours
)
return dataset
with open(os.path.join("<Dataset Diretory>", "instructions.json") as fp:
instructions = json.load(fp)
dataset = get_train_dataset(os.path.join("<Dataset Diretory>", "shards"))
```
---
## Ethical Considerations
* Contains robot teleoperation/automation data. No PII is present by design.
* Ensure safe deployment/testing on real robots; follow lab safety and manufacturer guidelines.
---
## Citation
If you use this dataset, please cite the dataset and your project appropriately. For example:
```bibtex
@software{rdt2,
title={RDT2: Enabling Zero-Shot Cross-Embodiment Generalization by Scaling Up UMI Data},
author={RDT Team},
url={https://github.com/thu-ml/RDT2},
month={September},
year={2025}
}
```
---
## License
* **Dataset license:** Apache-2.0 (unless otherwise noted by the maintainers of your fork/release).
* Ensure compliance when redistributing derived data or models.
---
## Maintainers & Contributions
We welcome fixes and improvements to the conversion scripts and docs (see https://github.com/thu-ml/RDT2/tree/main#troubleshooting).
Please open issues/PRs with:
* OS + Python versions
* Minimal repro code
* Error tracebacks
* Any other helpful context |