|
|
--- |
|
|
task_categories: |
|
|
- robotics |
|
|
language: |
|
|
- en |
|
|
tags: |
|
|
- RDT |
|
|
- rdt |
|
|
- RDT 2 |
|
|
- manipulation |
|
|
- bimanual |
|
|
- ur5e |
|
|
- webdatset |
|
|
- vision-language-action |
|
|
license: apache-2.0 |
|
|
--- |
|
|
|
|
|
## Dataset Summary |
|
|
|
|
|
This dataset provides shards in the **WebDataset** format for fine-tuning [RDT-2](https://rdt-robotics.github.io/rdt2/) or other policy models on **bimanual manipulation**. |
|
|
Each sample packs: |
|
|
|
|
|
* a **binocular RGB image** (left + right wrist cameras concatenated horizontally) |
|
|
* a **relative action chunk** (continuous control, 0.8s, 30Hz) |
|
|
* a **discrete action token sequence** (e.g., from an [Residual VQ action tokenizer](https://huggingface.co/robotics-diffusion-transformer/RVQActionTokenizer)) |
|
|
* a **metadata JSON** with an instruction key `sub_task_instruction_key` to index corresponding instruction from `instructions.json` |
|
|
|
|
|
Data were collected on a **bimanual UR5e** setup. |
|
|
|
|
|
--- |
|
|
|
|
|
## Supported Tasks |
|
|
|
|
|
* **Instruction-conditioned bimanual manipulation**, including: |
|
|
- Pouring water: different water bottles and cups |
|
|
- Cleaning the desktop: different dustpans and paper balls |
|
|
- Folding towels: towels of different sizes and colors |
|
|
- Stacking cups: cups of different sizes and colors |
|
|
|
|
|
--- |
|
|
|
|
|
## Data Structure |
|
|
|
|
|
### Shard layout |
|
|
|
|
|
Shards are named `shard-*.tar`. Inside each shard: |
|
|
|
|
|
``` |
|
|
shard-000000.tar |
|
|
├── 0.image.jpg # binocular RGB, H=384, W=768, C=3, uint8 |
|
|
├── 0.action.npy # relative actions, shape (24, 20), float32 |
|
|
├── 0.action_token.npy # action tokens, shape (27,), int16 ∈ [0, 1024) |
|
|
├── 0.meta.json # metadata; includes "sub_task_instruction_key" |
|
|
├── 1.image.jpg |
|
|
├── 1.action.npy |
|
|
├── 1.action_token.npy |
|
|
├── 1.meta.json |
|
|
└── ... |
|
|
shard-000001.tar |
|
|
shard-000002.tar |
|
|
... |
|
|
``` |
|
|
|
|
|
> **Image:** binocular wrist cameras concatenated horizontally → `np.ndarray` of shape `(384, 768, 3)` with `dtype=uint8` (stored as JPEG). |
|
|
> |
|
|
> **Action (continuous):** `np.ndarray` of shape `(24, 20)`, `dtype=float32` (24-step chunk, 20-D control). |
|
|
> |
|
|
> **Action tokens (discrete):** `np.ndarray` of shape `(27,)`, `dtype=int16`, values in `[0, 1024]`. |
|
|
> |
|
|
> **Metadata:** `meta.json` contains at least `sub_task_instruction_key` pointing to an entry in top-level `instructions.json`. |
|
|
|
|
|
|
|
|
--- |
|
|
|
|
|
## Example Data Instance |
|
|
|
|
|
```json |
|
|
{ |
|
|
"image": "0.image.jpg", |
|
|
"action": "0.action.npy", |
|
|
"action_token": "0.action_token.npy", |
|
|
"meta": { |
|
|
"sub_task_instruction_key": "fold_cloth_step_3" |
|
|
} |
|
|
} |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## How to Use |
|
|
|
|
|
### 1) Official Guidelines to fine-tune RDT 2 series |
|
|
|
|
|
Use the example [scripts](https://github.com/thu-ml/RDT2/blob/cf71b69927f726426c928293e37c63c4881b0165/data/utils.py#L48) and [guidelines](https://github.com/thu-ml/RDT2/blob/cf71b69927f726426c928293e37c63c4881b0165/data/utils.py#L48): |
|
|
|
|
|
### 2) Minimal Loading example |
|
|
|
|
|
```python |
|
|
import os |
|
|
import glob |
|
|
import json |
|
|
import random |
|
|
|
|
|
import webdataset as wds |
|
|
|
|
|
|
|
|
def no_split(src): |
|
|
yield from src |
|
|
|
|
|
def get_train_dataset(shards_dir): |
|
|
shards = sorted(glob.glob(os.path.join(shards_dir, "shard-*.tar"))) |
|
|
random.shuffle(shards) |
|
|
|
|
|
num_workers = wds.utils.pytorch_worker_info()[-1] |
|
|
workersplitter = wds.split_by_worker if len(shards) > num_workers else no_split |
|
|
|
|
|
assert shards, f"No shards under {shards_dir}" |
|
|
dataset = ( |
|
|
wds.WebDataset( |
|
|
shards, |
|
|
shardshuffle=False, |
|
|
nodesplitter=no_split, |
|
|
workersplitter=workersplitter, |
|
|
resampled=True, |
|
|
) |
|
|
.repeat() |
|
|
.shuffle(8192, initial=8192) |
|
|
.decode("pil") |
|
|
.map( |
|
|
lambda sample: { |
|
|
"image": sample["image.jpg"], |
|
|
"action_token": sample["action_token.npy"], |
|
|
"meta": sample["meta.json"], |
|
|
} |
|
|
) |
|
|
.with_epoch(nsamples=(2048 * 30 * 60 * 60)) # 2048 hours |
|
|
) |
|
|
|
|
|
return dataset |
|
|
|
|
|
with open(os.path.join("<Dataset Diretory>", "instructions.json") as fp: |
|
|
instructions = json.load(fp) |
|
|
dataset = get_train_dataset(os.path.join("<Dataset Diretory>", "shards")) |
|
|
``` |
|
|
--- |
|
|
|
|
|
## Ethical Considerations |
|
|
|
|
|
* Contains robot teleoperation/automation data. No PII is present by design. |
|
|
* Ensure safe deployment/testing on real robots; follow lab safety and manufacturer guidelines. |
|
|
|
|
|
--- |
|
|
|
|
|
## Citation |
|
|
|
|
|
If you use this dataset, please cite the dataset and your project appropriately. For example: |
|
|
|
|
|
```bibtex |
|
|
@software{rdt2, |
|
|
title={RDT2: Enabling Zero-Shot Cross-Embodiment Generalization by Scaling Up UMI Data}, |
|
|
author={RDT Team}, |
|
|
url={https://github.com/thu-ml/RDT2}, |
|
|
month={September}, |
|
|
year={2025} |
|
|
} |
|
|
``` |
|
|
|
|
|
--- |
|
|
|
|
|
## License |
|
|
|
|
|
* **Dataset license:** Apache-2.0 (unless otherwise noted by the maintainers of your fork/release). |
|
|
* Ensure compliance when redistributing derived data or models. |
|
|
|
|
|
--- |
|
|
|
|
|
## Maintainers & Contributions |
|
|
|
|
|
We welcome fixes and improvements to the conversion scripts and docs (see https://github.com/thu-ml/RDT2/tree/main#troubleshooting). |
|
|
Please open issues/PRs with: |
|
|
|
|
|
* OS + Python versions |
|
|
* Minimal repro code |
|
|
* Error tracebacks |
|
|
* Any other helpful context |