metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dense
- generated_from_trainer
- dataset_size:139891
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
- source_sentence: The three of us went biking this weekend.
sentences:
- >-
The person surfing emoji is used to represent the activity of surfing or
being at the beach. It can be used in contexts related to water sports,
summer time, vacations, or simply enjoying the beach life.
- >-
This emoji is used to symbolize zombies or Halloween. It can also be
used to indicate someone feeling tired or exhausted.
- >-
This emoji represents a family with a woman, girl, and boy. It can be
used to refer to a mother with her daughter and son, or any other
combination of a woman and children. It conveys a sense of family unity
and bond.
- source_sentence: Happy birthday to my favorite Guatemalan cousin!
sentences:
- >-
The flag of Guatemala emoji represents the national flag of Guatemala.
It features two horizontal bands of light blue and white with the
Guatemalan coat of arms in the center. This emoji is often used to show
pride in Guatemala or to celebrate Guatemalan culture.
- >-
The flag of Poland emoji represents the country of Poland. It is often
used in the context of showing patriotism, celebrating Polish holidays,
or expressing pride in Polish heritage.
- >-
The man judge emoji is commonly used to represent a judge or someone who
adjudicates legal matters. It can also symbolize fairness, justice, and
authority in various contexts.
- source_sentence: Passover is coming up soon!
sentences:
- >-
The flag of French Guiana emoji is used to represent the overseas
department and region of France located in South America. It features
the French tricolor flag with a yellow star in the center symbolizing
the Guianan people. This emoji is often used in the context of national
pride, cultural identity, and geographic location.
- >-
The mage emoji is commonly used to represent a magical wizard or
sorcerer. It can be used in fantasy-related conversations, or to express
a sense of mystery or enchantment.
- >-
The monkey emoji is often used to represent mischief, playfulness, or
even silliness. It can also symbolize agility, intelligence, or
curiosity. Additionally, it may be used in reference to the Chinese
zodiac sign of the Monkey.
- source_sentence: These beetles seem to be everywhere lately!
sentences:
- >-
The beetle emoji is often used to represent insects, bugs, nature, and
perseverance. It can also symbolize transformation and growth.
- >-
The flag of Cuba emoji represents the country of Cuba. It is commonly
used to show patriotism towards Cuba, celebrate Cuban culture, or during
events related to the country.
- >-
The man facepalming emoji is used to express frustration, exasperation,
or embarrassment. It can also convey disbelief or disappointment. This
emoji is often used humorously to show a facepalm reaction to something
dumb or silly.
- source_sentence: Inspired by the history behind Norfolk Island’s flag.
sentences:
- >-
The 🧒 emoji is used to represent a child, typically a young boy. It can
be used in various contexts related to childhood, innocence, and youth.
It may also symbolize playfulness and carefree attitude.
- >-
The flag of Norfolk Island emoji represents the unique flag of Norfolk
Island, which is an external territory of Australia. It is used to
symbolize the island's culture and identity.
- >-
The gear emoji is commonly used to represent machinery, equipment,
tools, or mechanics. It can also symbolize maintenance, repair, or work
involving gears and mechanical parts.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False, 'architecture': 'MPNetModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("zoharzaig/emoji-prediction-model")
# Run inference
sentences = [
'Inspired by the history behind Norfolk Island’s flag.',
"The flag of Norfolk Island emoji represents the unique flag of Norfolk Island, which is an external territory of Australia. It is used to symbolize the island's culture and identity.",
'The gear emoji is commonly used to represent machinery, equipment, tools, or mechanics. It can also symbolize maintenance, repair, or work involving gears and mechanical parts.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.7065, -0.0235],
# [ 0.7065, 1.0000, -0.0110],
# [-0.0235, -0.0110, 1.0000]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 139,891 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 6 tokens
- mean: 12.16 tokens
- max: 29 tokens
- min: 22 tokens
- mean: 46.23 tokens
- max: 89 tokens
- Samples:
sentence_0 sentence_1 Lunch is scheduled for eleven todayThe eleven o’clock emoji is used to indicate the time of 11:00 on a clock. It can be used to show that it is late morning, or to signify that an event is happening at this specific time. It can also be used in a more figurative sense to represent the idea of being right on time for something.Just finished reading an inspiring article on trans rights.The transgender symbol emoji is often used to represent individuals who identify as transgender or non-binaryI'm curious about the history behind Lesotho’s flag.The flag of Lesotho represents the country of Lesotho in southern Africa. It is a tricolor flag of horizontal stripes with a blue triangle on the left side. The colors symbolize different aspects of the country's history and culture. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 5multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0572 | 500 | 1.2611 |
| 0.1144 | 1000 | 1.0953 |
| 0.1715 | 1500 | 0.9964 |
| 0.2287 | 2000 | 0.9722 |
| 0.2859 | 2500 | 0.9712 |
| 0.3431 | 3000 | 0.918 |
| 0.4003 | 3500 | 0.9296 |
| 0.4575 | 4000 | 0.9069 |
| 0.5146 | 4500 | 0.9062 |
| 0.5718 | 5000 | 0.8788 |
| 0.6290 | 5500 | 0.895 |
| 0.6862 | 6000 | 0.8601 |
| 0.7434 | 6500 | 0.8461 |
| 0.8005 | 7000 | 0.8379 |
| 0.8577 | 7500 | 0.8209 |
| 0.9149 | 8000 | 0.8015 |
| 0.9721 | 8500 | 0.8103 |
| 1.0293 | 9000 | 0.7828 |
| 1.0865 | 9500 | 0.7064 |
| 1.1436 | 10000 | 0.6881 |
| 1.2008 | 10500 | 0.7004 |
| 1.2580 | 11000 | 0.7121 |
| 1.3152 | 11500 | 0.7222 |
| 1.3724 | 12000 | 0.7183 |
| 1.4296 | 12500 | 0.7024 |
| 1.4867 | 13000 | 0.7114 |
| 1.5439 | 13500 | 0.7115 |
| 1.6011 | 14000 | 0.6858 |
| 1.6583 | 14500 | 0.6944 |
| 1.7155 | 15000 | 0.6867 |
| 1.7726 | 15500 | 0.6776 |
| 1.8298 | 16000 | 0.7172 |
| 1.8870 | 16500 | 0.7086 |
| 1.9442 | 17000 | 0.6882 |
| 2.0014 | 17500 | 0.6788 |
| 2.0586 | 18000 | 0.5488 |
| 2.1157 | 18500 | 0.5428 |
| 2.1729 | 19000 | 0.5628 |
| 2.2301 | 19500 | 0.5524 |
| 2.2873 | 20000 | 0.5695 |
| 2.3445 | 20500 | 0.5708 |
| 2.4016 | 21000 | 0.5703 |
| 2.4588 | 21500 | 0.5512 |
| 2.5160 | 22000 | 0.5646 |
| 2.5732 | 22500 | 0.5753 |
| 2.6304 | 23000 | 0.5739 |
| 2.6876 | 23500 | 0.554 |
| 2.7447 | 24000 | 0.5744 |
| 2.8019 | 24500 | 0.5236 |
| 2.8591 | 25000 | 0.5471 |
| 2.9163 | 25500 | 0.5576 |
| 2.9735 | 26000 | 0.5601 |
| 3.0306 | 26500 | 0.5004 |
| 3.0878 | 27000 | 0.4471 |
| 3.1450 | 27500 | 0.4588 |
| 3.2022 | 28000 | 0.4439 |
| 3.2594 | 28500 | 0.4283 |
| 3.3166 | 29000 | 0.4452 |
| 3.3737 | 29500 | 0.4446 |
| 3.4309 | 30000 | 0.4413 |
| 3.4881 | 30500 | 0.4377 |
| 3.5453 | 31000 | 0.4504 |
| 3.6025 | 31500 | 0.4312 |
| 3.6597 | 32000 | 0.4397 |
| 3.7168 | 32500 | 0.4376 |
| 3.7740 | 33000 | 0.4596 |
| 3.8312 | 33500 | 0.4501 |
| 3.8884 | 34000 | 0.4338 |
| 3.9456 | 34500 | 0.4609 |
| 4.0027 | 35000 | 0.4476 |
| 4.0599 | 35500 | 0.3652 |
| 4.1171 | 36000 | 0.3506 |
| 4.1743 | 36500 | 0.3481 |
| 4.2315 | 37000 | 0.3805 |
| 4.2887 | 37500 | 0.3574 |
| 4.3458 | 38000 | 0.3622 |
| 4.4030 | 38500 | 0.3686 |
| 4.4602 | 39000 | 0.3572 |
| 4.5174 | 39500 | 0.3791 |
| 4.5746 | 40000 | 0.3736 |
| 4.6317 | 40500 | 0.3514 |
| 4.6889 | 41000 | 0.3682 |
| 4.7461 | 41500 | 0.3625 |
| 4.8033 | 42000 | 0.3601 |
| 4.8605 | 42500 | 0.3703 |
| 4.9177 | 43000 | 0.3783 |
| 4.9748 | 43500 | 0.3583 |
Framework Versions
- Python: 3.9.6
- Sentence Transformers: 5.0.0
- Transformers: 4.53.2
- PyTorch: 2.7.1
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}