SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False, 'architecture': 'MPNetModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("zoharzaig/emoji-prediction-model")
# Run inference
sentences = [
'Inspired by the history behind Norfolk Island’s flag.',
"The flag of Norfolk Island emoji represents the unique flag of Norfolk Island, which is an external territory of Australia. It is used to symbolize the island's culture and identity.",
'The gear emoji is commonly used to represent machinery, equipment, tools, or mechanics. It can also symbolize maintenance, repair, or work involving gears and mechanical parts.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.7065, -0.0235],
# [ 0.7065, 1.0000, -0.0110],
# [-0.0235, -0.0110, 1.0000]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 139,891 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 6 tokens
- mean: 12.16 tokens
- max: 29 tokens
- min: 22 tokens
- mean: 46.23 tokens
- max: 89 tokens
- Samples:
sentence_0 sentence_1 Lunch is scheduled for eleven todayThe eleven o’clock emoji is used to indicate the time of 11:00 on a clock. It can be used to show that it is late morning, or to signify that an event is happening at this specific time. It can also be used in a more figurative sense to represent the idea of being right on time for something.Just finished reading an inspiring article on trans rights.The transgender symbol emoji is often used to represent individuals who identify as transgender or non-binaryI'm curious about the history behind Lesotho’s flag.The flag of Lesotho represents the country of Lesotho in southern Africa. It is a tricolor flag of horizontal stripes with a blue triangle on the left side. The colors symbolize different aspects of the country's history and culture. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 5multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0572 | 500 | 1.2611 |
| 0.1144 | 1000 | 1.0953 |
| 0.1715 | 1500 | 0.9964 |
| 0.2287 | 2000 | 0.9722 |
| 0.2859 | 2500 | 0.9712 |
| 0.3431 | 3000 | 0.918 |
| 0.4003 | 3500 | 0.9296 |
| 0.4575 | 4000 | 0.9069 |
| 0.5146 | 4500 | 0.9062 |
| 0.5718 | 5000 | 0.8788 |
| 0.6290 | 5500 | 0.895 |
| 0.6862 | 6000 | 0.8601 |
| 0.7434 | 6500 | 0.8461 |
| 0.8005 | 7000 | 0.8379 |
| 0.8577 | 7500 | 0.8209 |
| 0.9149 | 8000 | 0.8015 |
| 0.9721 | 8500 | 0.8103 |
| 1.0293 | 9000 | 0.7828 |
| 1.0865 | 9500 | 0.7064 |
| 1.1436 | 10000 | 0.6881 |
| 1.2008 | 10500 | 0.7004 |
| 1.2580 | 11000 | 0.7121 |
| 1.3152 | 11500 | 0.7222 |
| 1.3724 | 12000 | 0.7183 |
| 1.4296 | 12500 | 0.7024 |
| 1.4867 | 13000 | 0.7114 |
| 1.5439 | 13500 | 0.7115 |
| 1.6011 | 14000 | 0.6858 |
| 1.6583 | 14500 | 0.6944 |
| 1.7155 | 15000 | 0.6867 |
| 1.7726 | 15500 | 0.6776 |
| 1.8298 | 16000 | 0.7172 |
| 1.8870 | 16500 | 0.7086 |
| 1.9442 | 17000 | 0.6882 |
| 2.0014 | 17500 | 0.6788 |
| 2.0586 | 18000 | 0.5488 |
| 2.1157 | 18500 | 0.5428 |
| 2.1729 | 19000 | 0.5628 |
| 2.2301 | 19500 | 0.5524 |
| 2.2873 | 20000 | 0.5695 |
| 2.3445 | 20500 | 0.5708 |
| 2.4016 | 21000 | 0.5703 |
| 2.4588 | 21500 | 0.5512 |
| 2.5160 | 22000 | 0.5646 |
| 2.5732 | 22500 | 0.5753 |
| 2.6304 | 23000 | 0.5739 |
| 2.6876 | 23500 | 0.554 |
| 2.7447 | 24000 | 0.5744 |
| 2.8019 | 24500 | 0.5236 |
| 2.8591 | 25000 | 0.5471 |
| 2.9163 | 25500 | 0.5576 |
| 2.9735 | 26000 | 0.5601 |
| 3.0306 | 26500 | 0.5004 |
| 3.0878 | 27000 | 0.4471 |
| 3.1450 | 27500 | 0.4588 |
| 3.2022 | 28000 | 0.4439 |
| 3.2594 | 28500 | 0.4283 |
| 3.3166 | 29000 | 0.4452 |
| 3.3737 | 29500 | 0.4446 |
| 3.4309 | 30000 | 0.4413 |
| 3.4881 | 30500 | 0.4377 |
| 3.5453 | 31000 | 0.4504 |
| 3.6025 | 31500 | 0.4312 |
| 3.6597 | 32000 | 0.4397 |
| 3.7168 | 32500 | 0.4376 |
| 3.7740 | 33000 | 0.4596 |
| 3.8312 | 33500 | 0.4501 |
| 3.8884 | 34000 | 0.4338 |
| 3.9456 | 34500 | 0.4609 |
| 4.0027 | 35000 | 0.4476 |
| 4.0599 | 35500 | 0.3652 |
| 4.1171 | 36000 | 0.3506 |
| 4.1743 | 36500 | 0.3481 |
| 4.2315 | 37000 | 0.3805 |
| 4.2887 | 37500 | 0.3574 |
| 4.3458 | 38000 | 0.3622 |
| 4.4030 | 38500 | 0.3686 |
| 4.4602 | 39000 | 0.3572 |
| 4.5174 | 39500 | 0.3791 |
| 4.5746 | 40000 | 0.3736 |
| 4.6317 | 40500 | 0.3514 |
| 4.6889 | 41000 | 0.3682 |
| 4.7461 | 41500 | 0.3625 |
| 4.8033 | 42000 | 0.3601 |
| 4.8605 | 42500 | 0.3703 |
| 4.9177 | 43000 | 0.3783 |
| 4.9748 | 43500 | 0.3583 |
Framework Versions
- Python: 3.9.6
- Sentence Transformers: 5.0.0
- Transformers: 4.53.2
- PyTorch: 2.7.1
- Accelerate: 1.9.0
- Datasets: 4.0.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 10
Model tree for zoharzaig/emoji-prediction-model
Base model
sentence-transformers/all-mpnet-base-v2