|  | --- | 
					
						
						|  | tags: | 
					
						
						|  | - safety | 
					
						
						|  | - sft | 
					
						
						|  | - gemma | 
					
						
						|  | license: apache-2.0 | 
					
						
						|  | datasets: | 
					
						
						|  | - nvidia/Aegis-AI-Content-Safety-Dataset-2.0 | 
					
						
						|  | language: | 
					
						
						|  | - en | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # google/gemma-7b-it Safety SFT | 
					
						
						|  |  | 
					
						
						|  | This model is fine-tuned from `google/gemma-7b-it` using the Nvidia Aegis AI Content Safety Dataset 2.0. | 
					
						
						|  |  | 
					
						
						|  | ## Training Details | 
					
						
						|  | - **Base Model**: google/gemma-7b-it | 
					
						
						|  | - **Dataset**: nvidia/Aegis-AI-Content-Safety-Dataset-2.0 | 
					
						
						|  | - **Training Mode**: balanced (safe responses + refusals) | 
					
						
						|  | - **Training Type**: Supervised Fine-Tuning (SFT) for safety | 
					
						
						|  |  | 
					
						
						|  | ## Safety Features | 
					
						
						|  | This model has been trained to: | 
					
						
						|  | - Provide helpful responses to safe prompts | 
					
						
						|  | - Refuse to engage with unsafe or harmful requests | 
					
						
						|  | - Maintain safety boundaries while being helpful | 
					
						
						|  |  | 
					
						
						|  | ## Usage | 
					
						
						|  | ```python | 
					
						
						|  | from transformers import AutoTokenizer, AutoModelForCausalLM | 
					
						
						|  |  | 
					
						
						|  | model = AutoModelForCausalLM.from_pretrained("ybkim95/google_gemma-7b-it_safety_sft") | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained("ybkim95/google_gemma-7b-it_safety_sft") | 
					
						
						|  |  | 
					
						
						|  | # Example usage | 
					
						
						|  | prompt = "User: [Your prompt here]\nAssistant:" | 
					
						
						|  | inputs = tokenizer(prompt, return_tensors="pt") | 
					
						
						|  | outputs = model.generate(**inputs, max_length=200) | 
					
						
						|  | response = tokenizer.decode(outputs[0], skip_special_tokens=True) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ## Model Files | 
					
						
						|  | This is a sharded model due to its size. All shards will be downloaded automatically when loading. | 
					
						
						|  |  |