File size: 1,299 Bytes
4b12b32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
---
tags:
- safety
- sft
- gemma
license: apache-2.0
datasets:
- nvidia/Aegis-AI-Content-Safety-Dataset-2.0
language:
- en
---
# google/gemma-7b-it Safety SFT
This model is fine-tuned from `google/gemma-7b-it` using the Nvidia Aegis AI Content Safety Dataset 2.0.
## Training Details
- **Base Model**: google/gemma-7b-it
- **Dataset**: nvidia/Aegis-AI-Content-Safety-Dataset-2.0
- **Training Mode**: balanced (safe responses + refusals)
- **Training Type**: Supervised Fine-Tuning (SFT) for safety
## Safety Features
This model has been trained to:
- Provide helpful responses to safe prompts
- Refuse to engage with unsafe or harmful requests
- Maintain safety boundaries while being helpful
## Usage
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("ybkim95/google_gemma-7b-it_safety_sft")
tokenizer = AutoTokenizer.from_pretrained("ybkim95/google_gemma-7b-it_safety_sft")
# Example usage
prompt = "User: [Your prompt here]\nAssistant:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
```
## Model Files
This is a sharded model due to its size. All shards will be downloaded automatically when loading.
|