multimodalart's picture
Update app.py
3bceb05 verified
raw
history blame
17.9 kB
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
import math
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
import os
import gradio as gr
from gradio_client import Client, handle_file
import tempfile
from huggingface_hub import InferenceClient
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509",
transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO",
subfolder='transformer',
torch_dtype=dtype,
device_map='cuda'),torch_dtype=dtype).to(device)
# Load the relight LoRA
pipe.load_lora_weights(
"dx8152/Qwen-Image-Edit-2509-Relight",
weight_name="Qwen-Edit-Relight.safetensors", adapter_name="relight"
)
pipe.set_adapters(["relight"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["relight"], lora_scale=1.25)
pipe.unload_lora_weights()
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")
MAX_SEED = np.iinfo(np.int32).max
# Initialize translation client
translation_client = InferenceClient(
api_key=os.environ.get("HF_TOKEN"),
)
def translate_to_chinese(text: str) -> str:
"""Translate any language text to Chinese using Qwen API."""
if not text or not text.strip():
return ""
# Check if text is already primarily Chinese
chinese_chars = sum(1 for char in text if '\u4e00' <= char <= '\u9fff')
if chinese_chars / max(len(text), 1) > 0.5:
# Already mostly Chinese, return as is
return text
try:
completion = translation_client.chat.completions.create(
model="Qwen/Qwen3-Next-80B-A3B-Instruct:novita",
messages=[
{
"role": "system",
"content": "You are a professional translator. Translate the user's text to Chinese. Only output the translated text, nothing else."
},
{
"role": "user",
"content": f"Translate this to Chinese: {text}"
}
],
max_tokens=500,
)
translated = completion.choices[0].message.content.strip()
print(f"Translated '{text}' to '{translated}'")
return translated
except Exception as e:
print(f"Translation error: {e}")
# Fallback to original text if translation fails
return text
def _generate_video_segment(input_image_path: str, output_image_path: str, prompt: str, request: gr.Request) -> str:
"""Generates a single video segment using the external service."""
x_ip_token = request.headers['x-ip-token']
video_client = Client("multimodalart/wan-2-2-first-last-frame", headers={"x-ip-token": x_ip_token})
result = video_client.predict(
start_image_pil=handle_file(input_image_path),
end_image_pil=handle_file(output_image_path),
prompt=prompt, api_name="/generate_video",
)
return result[0]["video"]
def build_relight_prompt(light_type, light_direction, light_intensity, prompt):
"""Build the relighting prompt based on user selections."""
# Priority 1: User's prompt (translated to Chinese if needed)
if prompt and prompt.strip():
translated = translate_to_chinese(prompt)
# Add trigger word if not already present
if "重新照明" not in translated:
return f"重新照明,{translated}"
return translated
# Priority 2: Build from controls
prompt_parts = ["重新照明"]
# Light type descriptions
light_descriptions = {
"soft_window": "使用窗帘透光(柔和漫射)的光线", # Soft diffuse light from curtains
"golden_hour": "使用金色黄昏的温暖光线", # Warm golden hour light
"studio": "使用专业摄影棚的均匀光线", # Professional studio lighting
"dramatic": "使用戏剧性的高对比度光线", # Dramatic high-contrast lighting
"natural": "使用自然日光", # Natural daylight
"neon": "使用霓虹灯光效果", # Neon lighting effect
"candlelight": "使用烛光的温暖氛围", # Warm candlelight ambiance
"moonlight": "使用月光的冷色调", # Cool-toned moonlight
}
# Direction descriptions
direction_descriptions = {
"front": "从正面照射", # From the front
"side": "从侧面照射", # From the side
"back": "从背后照射", # From behind (backlight)
"top": "从上方照射", # From above
"bottom": "从下方照射", # From below
}
# Intensity descriptions
intensity_descriptions = {
"soft": "柔和强度", # Soft intensity
"medium": "中等强度", # Medium intensity
"strong": "强烈强度", # Strong intensity
}
# Build the prompt
if light_type != "none":
prompt_parts.append(light_descriptions.get(light_type, ""))
if light_direction != "none":
prompt_parts.append(direction_descriptions.get(light_direction, ""))
if light_intensity != "none":
prompt_parts.append(intensity_descriptions.get(light_intensity, ""))
final_prompt = ",".join([p for p in prompt_parts if p])
# Add instruction if we have settings
if len(prompt_parts) > 1:
final_prompt += "对图片进行重新照明" # Relight the image
return final_prompt if len(prompt_parts) > 1 else "重新照明,使用自然光线对图片进行重新照明"
@spaces.GPU
def infer_relight(
image,
light_type,
light_direction,
light_intensity,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
height,
width,
prev_output = None,
progress=gr.Progress(track_tqdm=True)
):
final_prompt = build_relight_prompt(light_type, light_direction, light_intensity, prompt)
print(f"Generated Prompt: {final_prompt}")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Choose input image (prefer uploaded, else last output)
pil_images = []
if image is not None:
if isinstance(image, Image.Image):
pil_images.append(image.convert("RGB"))
elif hasattr(image, "name"):
pil_images.append(Image.open(image.name).convert("RGB"))
elif prev_output:
pil_images.append(prev_output.convert("RGB"))
if len(pil_images) == 0:
raise gr.Error("Please upload an image first.")
result = pipe(
image=pil_images,
prompt=final_prompt,
height=height if height != 0 else None,
width=width if width != 0 else None,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=1,
).images[0]
return result, seed, final_prompt
def create_video_between_images(input_image, output_image, prompt: str, request: gr.Request) -> str:
"""Create a video between the input and output images."""
if input_image is None or output_image is None:
raise gr.Error("Both input and output images are required to create a video.")
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
input_image.save(tmp.name)
input_image_path = tmp.name
output_pil = Image.fromarray(output_image.astype('uint8'))
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
output_pil.save(tmp.name)
output_image_path = tmp.name
video_path = _generate_video_segment(
input_image_path,
output_image_path,
prompt if prompt else "Relighting transformation",
request
)
return video_path
except Exception as e:
raise gr.Error(f"Video generation failed: {e}")
# --- UI ---
css = '''#col-container { max-width: 800px; margin: 0 auto; }
.dark .progress-text{color: white !important}
#examples{max-width: 800px; margin: 0 auto; }'''
def reset_all():
return ["none", "none", "none", "", False, True]
def end_reset():
return False
def update_dimensions_on_upload(image):
if image is None:
return 1024, 1024
original_width, original_height = image.size
if original_width > original_height:
new_width = 1024
aspect_ratio = original_height / original_width
new_height = int(new_width * aspect_ratio)
else:
new_height = 1024
aspect_ratio = original_width / original_height
new_width = int(new_height * aspect_ratio)
# Ensure dimensions are multiples of 8
new_width = (new_width // 8) * 8
new_height = (new_height // 8) * 8
return new_width, new_height
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("## 💡 Qwen Image Edit — Relighting Control")
gr.Markdown("""
Qwen Image Edit 2509 for Image Relighting ✨
Using [dx8152's Qwen-Image-Edit-2509-Relight LoRA](https://huggingface.co/dx8152/Qwen-Image-Edit-2509-Relight) and [linoyts/Qwen-Image-Edit-Rapid-AIO](https://huggingface.co/linoyts/Qwen-Image-Edit-Rapid-AIO) for 4-step inference 💨
"""
)
with gr.Row():
with gr.Column():
image = gr.Image(label="Input Image", type="pil")
prev_output = gr.Image(value=None, visible=False)
is_reset = gr.Checkbox(value=False, visible=False)
with gr.Tab("Lighting Controls"):
light_type = gr.Dropdown(
label="Light Type",
choices=[
("None", "none"),
("Soft Window Light (柔和窗光)", "soft_window"),
("Golden Hour (金色黄昏)", "golden_hour"),
("Studio Lighting (摄影棚灯光)", "studio"),
("Dramatic (戏剧性)", "dramatic"),
("Natural Daylight (自然日光)", "natural"),
("Neon (霓虹灯)", "neon"),
("Candlelight (烛光)", "candlelight"),
("Moonlight (月光)", "moonlight"),
],
value="none"
)
light_direction = gr.Dropdown(
label="Light Direction",
choices=[
("None", "none"),
("Front (正面)", "front"),
("Side (侧面)", "side"),
("Back (背光)", "back"),
("Top (上方)", "top"),
("Bottom (下方)", "bottom"),
],
value="none"
)
light_intensity = gr.Dropdown(
label="Light Intensity",
choices=[
("None", "none"),
("Soft (柔和)", "soft"),
("Medium (中等)", "medium"),
("Strong (强烈)", "strong"),
],
value="none"
)
with gr.Tab("Custom Prompt"):
prompt = gr.Textbox(
label="Relighting Prompt",
placeholder="Example: Add warm sunset lighting from the right",
lines=3
)
with gr.Row():
reset_btn = gr.Button("Reset")
run_btn = gr.Button("Generate", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
true_guidance_scale = gr.Slider(label="True Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=4)
height = gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024)
width = gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024)
with gr.Column():
result = gr.Image(label="Output Image", interactive=False)
prompt_preview = gr.Textbox(label="Processed Prompt", interactive=False)
create_video_button = gr.Button("🎥 Create Video Between Images", variant="secondary", visible=False)
with gr.Group(visible=False) as video_group:
video_output = gr.Video(label="Generated Video", show_download_button=True, autoplay=True)
inputs = [
image, light_type, light_direction, light_intensity, prompt,
seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output
]
outputs = [result, seed, prompt_preview]
# Reset behavior
reset_btn.click(
fn=reset_all,
inputs=None,
outputs=[light_type, light_direction, light_intensity, prompt, is_reset],
queue=False
).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False)
# Manual generation with video button visibility control
def infer_and_show_video_button(*args):
result_img, result_seed, result_prompt = infer_relight(*args)
# Show video button if we have both input and output images
show_button = args[0] is not None and result_img is not None
return result_img, result_seed, result_prompt, gr.update(visible=show_button)
run_event = run_btn.click(
fn=infer_and_show_video_button,
inputs=inputs,
outputs=outputs + [create_video_button]
)
# Video creation
create_video_button.click(
fn=lambda: gr.update(visible=True),
outputs=[video_group],
api_name=False
).then(
fn=create_video_between_images,
inputs=[image, result, prompt_preview],
outputs=[video_output],
api_name=False
)
# Examples - You'll need to add your own example images
gr.Examples(
examples=[
[None, "soft_window", "side", "soft", "", 0, True, 1.0, 4, 1024, 1024],
[None, "golden_hour", "front", "medium", "", 0, True, 1.0, 4, 1024, 1024],
[None, "dramatic", "side", "strong", "", 0, True, 1.0, 4, 1024, 1024],
[None, "neon", "front", "medium", "", 0, True, 1.0, 4, 1024, 1024],
[None, "candlelight", "front", "soft", "", 0, True, 1.0, 4, 1024, 1024],
],
inputs=[image, light_type, light_direction, light_intensity, prompt,
seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width],
outputs=outputs,
fn=infer_relight,
cache_examples="lazy",
elem_id="examples"
)
# Image upload triggers dimension update and control reset
image.upload(
fn=update_dimensions_on_upload,
inputs=[image],
outputs=[width, height]
).then(
fn=reset_all,
inputs=None,
outputs=[light_type, light_direction, light_intensity, prompt, is_reset],
queue=False
).then(
fn=end_reset,
inputs=None,
outputs=[is_reset],
queue=False
)
# Live updates
def maybe_infer(is_reset, progress=gr.Progress(track_tqdm=True), *args):
if is_reset:
return gr.update(), gr.update(), gr.update(), gr.update()
else:
result_img, result_seed, result_prompt = infer_relight(*args)
# Show video button if we have both input and output
show_button = args[0] is not None and result_img is not None
return result_img, result_seed, result_prompt, gr.update(visible=show_button)
control_inputs = [
image, light_type, light_direction, light_intensity, prompt,
seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output
]
control_inputs_with_flag = [is_reset] + control_inputs
for control in [light_type, light_direction, light_intensity]:
control.input(fn=maybe_infer, inputs=control_inputs_with_flag, outputs=outputs + [create_video_button])
run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output])
demo.launch()