Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| import spaces | |
| from PIL import Image | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| from optimization import optimize_pipeline_ | |
| from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline | |
| from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel | |
| from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 | |
| import math | |
| from huggingface_hub import hf_hub_download | |
| from safetensors.torch import load_file | |
| from PIL import Image | |
| import os | |
| import gradio as gr | |
| from gradio_client import Client, handle_file | |
| import tempfile | |
| from huggingface_hub import InferenceClient | |
| # --- Model Loading --- | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", | |
| transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO", | |
| subfolder='transformer', | |
| torch_dtype=dtype, | |
| device_map='cuda'),torch_dtype=dtype).to(device) | |
| # Load the relight LoRA | |
| pipe.load_lora_weights( | |
| "dx8152/Qwen-Image-Edit-2509-Relight", | |
| weight_name="Qwen-Edit-Relight.safetensors", adapter_name="relight" | |
| ) | |
| pipe.set_adapters(["relight"], adapter_weights=[1.]) | |
| pipe.fuse_lora(adapter_names=["relight"], lora_scale=1.25) | |
| pipe.unload_lora_weights() | |
| pipe.transformer.__class__ = QwenImageTransformer2DModel | |
| pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) | |
| optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt") | |
| MAX_SEED = np.iinfo(np.int32).max | |
| # Initialize translation client | |
| translation_client = InferenceClient( | |
| api_key=os.environ.get("HF_TOKEN"), | |
| ) | |
| def translate_to_chinese(text: str) -> str: | |
| """Translate any language text to Chinese using Qwen API.""" | |
| if not text or not text.strip(): | |
| return "" | |
| # Check if text is already primarily Chinese | |
| chinese_chars = sum(1 for char in text if '\u4e00' <= char <= '\u9fff') | |
| if chinese_chars / max(len(text), 1) > 0.5: | |
| # Already mostly Chinese, return as is | |
| return text | |
| try: | |
| completion = translation_client.chat.completions.create( | |
| model="Qwen/Qwen3-Next-80B-A3B-Instruct:novita", | |
| messages=[ | |
| { | |
| "role": "system", | |
| "content": "You are a professional translator. Translate the user's text to Chinese. Only output the translated text, nothing else." | |
| }, | |
| { | |
| "role": "user", | |
| "content": f"Translate this to Chinese: {text}" | |
| } | |
| ], | |
| max_tokens=500, | |
| ) | |
| translated = completion.choices[0].message.content.strip() | |
| print(f"Translated '{text}' to '{translated}'") | |
| return translated | |
| except Exception as e: | |
| print(f"Translation error: {e}") | |
| # Fallback to original text if translation fails | |
| return text | |
| def _generate_video_segment(input_image_path: str, output_image_path: str, prompt: str, request: gr.Request) -> str: | |
| """Generates a single video segment using the external service.""" | |
| x_ip_token = request.headers['x-ip-token'] | |
| video_client = Client("multimodalart/wan-2-2-first-last-frame", headers={"x-ip-token": x_ip_token}) | |
| result = video_client.predict( | |
| start_image_pil=handle_file(input_image_path), | |
| end_image_pil=handle_file(output_image_path), | |
| prompt=prompt, api_name="/generate_video", | |
| ) | |
| return result[0]["video"] | |
| def build_relight_prompt(light_type, light_direction, light_intensity, prompt): | |
| """Build the relighting prompt based on user selections.""" | |
| # Priority 1: User's prompt (translated to Chinese if needed) | |
| if prompt and prompt.strip(): | |
| translated = translate_to_chinese(prompt) | |
| # Add trigger word if not already present | |
| if "重新照明" not in translated: | |
| return f"重新照明,{translated}" | |
| return translated | |
| # Priority 2: Build from controls | |
| prompt_parts = ["重新照明"] | |
| # Light type descriptions | |
| light_descriptions = { | |
| "soft_window": "使用窗帘透光(柔和漫射)的光线", # Soft diffuse light from curtains | |
| "golden_hour": "使用金色黄昏的温暖光线", # Warm golden hour light | |
| "studio": "使用专业摄影棚的均匀光线", # Professional studio lighting | |
| "dramatic": "使用戏剧性的高对比度光线", # Dramatic high-contrast lighting | |
| "natural": "使用自然日光", # Natural daylight | |
| "neon": "使用霓虹灯光效果", # Neon lighting effect | |
| "candlelight": "使用烛光的温暖氛围", # Warm candlelight ambiance | |
| "moonlight": "使用月光的冷色调", # Cool-toned moonlight | |
| } | |
| # Direction descriptions | |
| direction_descriptions = { | |
| "front": "从正面照射", # From the front | |
| "side": "从侧面照射", # From the side | |
| "back": "从背后照射", # From behind (backlight) | |
| "top": "从上方照射", # From above | |
| "bottom": "从下方照射", # From below | |
| } | |
| # Intensity descriptions | |
| intensity_descriptions = { | |
| "soft": "柔和强度", # Soft intensity | |
| "medium": "中等强度", # Medium intensity | |
| "strong": "强烈强度", # Strong intensity | |
| } | |
| # Build the prompt | |
| if light_type != "none": | |
| prompt_parts.append(light_descriptions.get(light_type, "")) | |
| if light_direction != "none": | |
| prompt_parts.append(direction_descriptions.get(light_direction, "")) | |
| if light_intensity != "none": | |
| prompt_parts.append(intensity_descriptions.get(light_intensity, "")) | |
| final_prompt = ",".join([p for p in prompt_parts if p]) | |
| # Add instruction if we have settings | |
| if len(prompt_parts) > 1: | |
| final_prompt += "对图片进行重新照明" # Relight the image | |
| return final_prompt if len(prompt_parts) > 1 else "重新照明,使用自然光线对图片进行重新照明" | |
| def infer_relight( | |
| image, | |
| light_type, | |
| light_direction, | |
| light_intensity, | |
| prompt, | |
| seed, | |
| randomize_seed, | |
| true_guidance_scale, | |
| num_inference_steps, | |
| height, | |
| width, | |
| prev_output = None, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| final_prompt = build_relight_prompt(light_type, light_direction, light_intensity, prompt) | |
| print(f"Generated Prompt: {final_prompt}") | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| # Choose input image (prefer uploaded, else last output) | |
| pil_images = [] | |
| if image is not None: | |
| if isinstance(image, Image.Image): | |
| pil_images.append(image.convert("RGB")) | |
| elif hasattr(image, "name"): | |
| pil_images.append(Image.open(image.name).convert("RGB")) | |
| elif prev_output: | |
| pil_images.append(prev_output.convert("RGB")) | |
| if len(pil_images) == 0: | |
| raise gr.Error("Please upload an image first.") | |
| result = pipe( | |
| image=pil_images, | |
| prompt=final_prompt, | |
| height=height if height != 0 else None, | |
| width=width if width != 0 else None, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| true_cfg_scale=true_guidance_scale, | |
| num_images_per_prompt=1, | |
| ).images[0] | |
| return result, seed, final_prompt | |
| def create_video_between_images(input_image, output_image, prompt: str, request: gr.Request) -> str: | |
| """Create a video between the input and output images.""" | |
| if input_image is None or output_image is None: | |
| raise gr.Error("Both input and output images are required to create a video.") | |
| try: | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp: | |
| input_image.save(tmp.name) | |
| input_image_path = tmp.name | |
| output_pil = Image.fromarray(output_image.astype('uint8')) | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp: | |
| output_pil.save(tmp.name) | |
| output_image_path = tmp.name | |
| video_path = _generate_video_segment( | |
| input_image_path, | |
| output_image_path, | |
| prompt if prompt else "Relighting transformation", | |
| request | |
| ) | |
| return video_path | |
| except Exception as e: | |
| raise gr.Error(f"Video generation failed: {e}") | |
| # --- UI --- | |
| css = '''#col-container { max-width: 800px; margin: 0 auto; } | |
| .dark .progress-text{color: white !important} | |
| #examples{max-width: 800px; margin: 0 auto; }''' | |
| def reset_all(): | |
| return ["none", "none", "none", "", False, True] | |
| def end_reset(): | |
| return False | |
| def update_dimensions_on_upload(image): | |
| if image is None: | |
| return 1024, 1024 | |
| original_width, original_height = image.size | |
| if original_width > original_height: | |
| new_width = 1024 | |
| aspect_ratio = original_height / original_width | |
| new_height = int(new_width * aspect_ratio) | |
| else: | |
| new_height = 1024 | |
| aspect_ratio = original_width / original_height | |
| new_width = int(new_height * aspect_ratio) | |
| # Ensure dimensions are multiples of 8 | |
| new_width = (new_width // 8) * 8 | |
| new_height = (new_height // 8) * 8 | |
| return new_width, new_height | |
| with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("## 💡 Qwen Image Edit — Relighting Control") | |
| gr.Markdown(""" | |
| Qwen Image Edit 2509 for Image Relighting ✨ | |
| Using [dx8152's Qwen-Image-Edit-2509-Relight LoRA](https://huggingface.co/dx8152/Qwen-Image-Edit-2509-Relight) and [linoyts/Qwen-Image-Edit-Rapid-AIO](https://huggingface.co/linoyts/Qwen-Image-Edit-Rapid-AIO) for 4-step inference 💨 | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(label="Input Image", type="pil") | |
| prev_output = gr.Image(value=None, visible=False) | |
| is_reset = gr.Checkbox(value=False, visible=False) | |
| with gr.Tab("Lighting Controls"): | |
| light_type = gr.Dropdown( | |
| label="Light Type", | |
| choices=[ | |
| ("None", "none"), | |
| ("Soft Window Light (柔和窗光)", "soft_window"), | |
| ("Golden Hour (金色黄昏)", "golden_hour"), | |
| ("Studio Lighting (摄影棚灯光)", "studio"), | |
| ("Dramatic (戏剧性)", "dramatic"), | |
| ("Natural Daylight (自然日光)", "natural"), | |
| ("Neon (霓虹灯)", "neon"), | |
| ("Candlelight (烛光)", "candlelight"), | |
| ("Moonlight (月光)", "moonlight"), | |
| ], | |
| value="none" | |
| ) | |
| light_direction = gr.Dropdown( | |
| label="Light Direction", | |
| choices=[ | |
| ("None", "none"), | |
| ("Front (正面)", "front"), | |
| ("Side (侧面)", "side"), | |
| ("Back (背光)", "back"), | |
| ("Top (上方)", "top"), | |
| ("Bottom (下方)", "bottom"), | |
| ], | |
| value="none" | |
| ) | |
| light_intensity = gr.Dropdown( | |
| label="Light Intensity", | |
| choices=[ | |
| ("None", "none"), | |
| ("Soft (柔和)", "soft"), | |
| ("Medium (中等)", "medium"), | |
| ("Strong (强烈)", "strong"), | |
| ], | |
| value="none" | |
| ) | |
| with gr.Tab("Custom Prompt"): | |
| prompt = gr.Textbox( | |
| label="Relighting Prompt", | |
| placeholder="Example: Add warm sunset lighting from the right", | |
| lines=3 | |
| ) | |
| with gr.Row(): | |
| reset_btn = gr.Button("Reset") | |
| run_btn = gr.Button("Generate", variant="primary") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| true_guidance_scale = gr.Slider(label="True Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0) | |
| num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=4) | |
| height = gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024) | |
| width = gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024) | |
| with gr.Column(): | |
| result = gr.Image(label="Output Image", interactive=False) | |
| prompt_preview = gr.Textbox(label="Processed Prompt", interactive=False) | |
| create_video_button = gr.Button("🎥 Create Video Between Images", variant="secondary", visible=False) | |
| with gr.Group(visible=False) as video_group: | |
| video_output = gr.Video(label="Generated Video", show_download_button=True, autoplay=True) | |
| inputs = [ | |
| image, light_type, light_direction, light_intensity, prompt, | |
| seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output | |
| ] | |
| outputs = [result, seed, prompt_preview] | |
| # Reset behavior | |
| reset_btn.click( | |
| fn=reset_all, | |
| inputs=None, | |
| outputs=[light_type, light_direction, light_intensity, prompt, is_reset], | |
| queue=False | |
| ).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False) | |
| # Manual generation with video button visibility control | |
| def infer_and_show_video_button(*args): | |
| result_img, result_seed, result_prompt = infer_relight(*args) | |
| # Show video button if we have both input and output images | |
| show_button = args[0] is not None and result_img is not None | |
| return result_img, result_seed, result_prompt, gr.update(visible=show_button) | |
| run_event = run_btn.click( | |
| fn=infer_and_show_video_button, | |
| inputs=inputs, | |
| outputs=outputs + [create_video_button] | |
| ) | |
| # Video creation | |
| create_video_button.click( | |
| fn=lambda: gr.update(visible=True), | |
| outputs=[video_group], | |
| api_name=False | |
| ).then( | |
| fn=create_video_between_images, | |
| inputs=[image, result, prompt_preview], | |
| outputs=[video_output], | |
| api_name=False | |
| ) | |
| # Examples - You'll need to add your own example images | |
| gr.Examples( | |
| examples=[ | |
| [None, "soft_window", "side", "soft", "", 0, True, 1.0, 4, 1024, 1024], | |
| [None, "golden_hour", "front", "medium", "", 0, True, 1.0, 4, 1024, 1024], | |
| [None, "dramatic", "side", "strong", "", 0, True, 1.0, 4, 1024, 1024], | |
| [None, "neon", "front", "medium", "", 0, True, 1.0, 4, 1024, 1024], | |
| [None, "candlelight", "front", "soft", "", 0, True, 1.0, 4, 1024, 1024], | |
| ], | |
| inputs=[image, light_type, light_direction, light_intensity, prompt, | |
| seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width], | |
| outputs=outputs, | |
| fn=infer_relight, | |
| cache_examples="lazy", | |
| elem_id="examples" | |
| ) | |
| # Image upload triggers dimension update and control reset | |
| image.upload( | |
| fn=update_dimensions_on_upload, | |
| inputs=[image], | |
| outputs=[width, height] | |
| ).then( | |
| fn=reset_all, | |
| inputs=None, | |
| outputs=[light_type, light_direction, light_intensity, prompt, is_reset], | |
| queue=False | |
| ).then( | |
| fn=end_reset, | |
| inputs=None, | |
| outputs=[is_reset], | |
| queue=False | |
| ) | |
| # Live updates | |
| def maybe_infer(is_reset, progress=gr.Progress(track_tqdm=True), *args): | |
| if is_reset: | |
| return gr.update(), gr.update(), gr.update(), gr.update() | |
| else: | |
| result_img, result_seed, result_prompt = infer_relight(*args) | |
| # Show video button if we have both input and output | |
| show_button = args[0] is not None and result_img is not None | |
| return result_img, result_seed, result_prompt, gr.update(visible=show_button) | |
| control_inputs = [ | |
| image, light_type, light_direction, light_intensity, prompt, | |
| seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output | |
| ] | |
| control_inputs_with_flag = [is_reset] + control_inputs | |
| for control in [light_type, light_direction, light_intensity]: | |
| control.input(fn=maybe_infer, inputs=control_inputs_with_flag, outputs=outputs + [create_video_button]) | |
| run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output]) | |
| demo.launch() | |