File size: 17,920 Bytes
a3f5a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0661e2
a3f5a50
 
b0661e2
 
 
a3f5a50
 
 
 
 
b0661e2
a3f5a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0661e2
a3f5a50
 
 
 
 
 
 
 
 
b0661e2
 
a3f5a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0661e2
a3f5a50
 
 
 
 
 
 
 
b0661e2
a3f5a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0661e2
a3f5a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bceb05
 
 
 
 
a3f5a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0661e2
 
 
a3f5a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0661e2
a3f5a50
 
 
 
 
 
 
 
b0661e2
a3f5a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0661e2
 
 
 
 
a3f5a50
b0661e2
a3f5a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0661e2
a3f5a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0661e2
a3f5a50
 
 
 
 
b0661e2
a3f5a50
 
 
b0661e2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import gradio as gr
import numpy as np
import random
import torch
import spaces

from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3

import math
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

from PIL import Image
import os
import gradio as gr
from gradio_client import Client, handle_file
import tempfile
from huggingface_hub import InferenceClient


# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", 
                                                transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO", 
                                                                                                         subfolder='transformer',
                                                                                                         torch_dtype=dtype,
                                                                                                         device_map='cuda'),torch_dtype=dtype).to(device)

# Load the relight LoRA
pipe.load_lora_weights(
        "dx8152/Qwen-Image-Edit-2509-Relight", 
        weight_name="Qwen-Edit-Relight.safetensors", adapter_name="relight"
    )

pipe.set_adapters(["relight"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["relight"], lora_scale=1.25)
pipe.unload_lora_weights()

pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())

optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")


MAX_SEED = np.iinfo(np.int32).max

# Initialize translation client
translation_client = InferenceClient(
    api_key=os.environ.get("HF_TOKEN"),
)

def translate_to_chinese(text: str) -> str:
    """Translate any language text to Chinese using Qwen API."""
    if not text or not text.strip():
        return ""
    
    # Check if text is already primarily Chinese
    chinese_chars = sum(1 for char in text if '\u4e00' <= char <= '\u9fff')
    if chinese_chars / max(len(text), 1) > 0.5:
        # Already mostly Chinese, return as is
        return text
    
    try:
        completion = translation_client.chat.completions.create(
            model="Qwen/Qwen3-Next-80B-A3B-Instruct:novita",
            messages=[
                {
                    "role": "system",
                    "content": "You are a professional translator. Translate the user's text to Chinese. Only output the translated text, nothing else."
                },
                {
                    "role": "user",
                    "content": f"Translate this to Chinese: {text}"
                }
            ],
            max_tokens=500,
        )
        
        translated = completion.choices[0].message.content.strip()
        print(f"Translated '{text}' to '{translated}'")
        return translated
    except Exception as e:
        print(f"Translation error: {e}")
        # Fallback to original text if translation fails
        return text

def _generate_video_segment(input_image_path: str, output_image_path: str, prompt: str, request: gr.Request) -> str:
    """Generates a single video segment using the external service."""
    x_ip_token = request.headers['x-ip-token']
    video_client = Client("multimodalart/wan-2-2-first-last-frame", headers={"x-ip-token": x_ip_token})
    result = video_client.predict(
        start_image_pil=handle_file(input_image_path),
        end_image_pil=handle_file(output_image_path),
        prompt=prompt, api_name="/generate_video",
    )
    return result[0]["video"]

def build_relight_prompt(light_type, light_direction, light_intensity, prompt):
    """Build the relighting prompt based on user selections."""
    
    # Priority 1: User's prompt (translated to Chinese if needed)
    if prompt and prompt.strip():
        translated = translate_to_chinese(prompt)
        # Add trigger word if not already present
        if "重新照明" not in translated:
            return f"重新照明,{translated}"
        return translated
    
    # Priority 2: Build from controls
    prompt_parts = ["重新照明"]
    
    # Light type descriptions
    light_descriptions = {
        "soft_window": "使用窗帘透光(柔和漫射)的光线",  # Soft diffuse light from curtains
        "golden_hour": "使用金色黄昏的温暖光线",  # Warm golden hour light
        "studio": "使用专业摄影棚的均匀光线",  # Professional studio lighting
        "dramatic": "使用戏剧性的高对比度光线",  # Dramatic high-contrast lighting
        "natural": "使用自然日光",  # Natural daylight
        "neon": "使用霓虹灯光效果",  # Neon lighting effect
        "candlelight": "使用烛光的温暖氛围",  # Warm candlelight ambiance
        "moonlight": "使用月光的冷色调",  # Cool-toned moonlight
    }
    
    # Direction descriptions
    direction_descriptions = {
        "front": "从正面照射",  # From the front
        "side": "从侧面照射",  # From the side
        "back": "从背后照射",  # From behind (backlight)
        "top": "从上方照射",  # From above
        "bottom": "从下方照射",  # From below
    }
    
    # Intensity descriptions
    intensity_descriptions = {
        "soft": "柔和强度",  # Soft intensity
        "medium": "中等强度",  # Medium intensity
        "strong": "强烈强度",  # Strong intensity
    }
    
    # Build the prompt
    if light_type != "none":
        prompt_parts.append(light_descriptions.get(light_type, ""))
    
    if light_direction != "none":
        prompt_parts.append(direction_descriptions.get(light_direction, ""))
    
    if light_intensity != "none":
        prompt_parts.append(intensity_descriptions.get(light_intensity, ""))
    
    final_prompt = ",".join([p for p in prompt_parts if p])
    
    # Add instruction if we have settings
    if len(prompt_parts) > 1:
        final_prompt += "对图片进行重新照明"  # Relight the image
    
    return final_prompt if len(prompt_parts) > 1 else "重新照明,使用自然光线对图片进行重新照明"


@spaces.GPU
def infer_relight(
    image,
    light_type,
    light_direction,
    light_intensity,
    prompt,
    seed,
    randomize_seed,
    true_guidance_scale,
    num_inference_steps,
    height,
    width,
    prev_output = None,
    progress=gr.Progress(track_tqdm=True)
):
    final_prompt = build_relight_prompt(light_type, light_direction, light_intensity, prompt)
    print(f"Generated Prompt: {final_prompt}")

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)

    # Choose input image (prefer uploaded, else last output)
    pil_images = []
    if image is not None:
        if isinstance(image, Image.Image):
            pil_images.append(image.convert("RGB"))
        elif hasattr(image, "name"):
            pil_images.append(Image.open(image.name).convert("RGB"))
    elif prev_output:
        pil_images.append(prev_output.convert("RGB"))

    if len(pil_images) == 0:
        raise gr.Error("Please upload an image first.")

    result = pipe(
        image=pil_images,
        prompt=final_prompt,
        height=height if height != 0 else None,
        width=width if width != 0 else None,
        num_inference_steps=num_inference_steps,
        generator=generator,
        true_cfg_scale=true_guidance_scale,
        num_images_per_prompt=1,
    ).images[0]

    return result, seed, final_prompt

def create_video_between_images(input_image, output_image, prompt: str, request: gr.Request) -> str:
    """Create a video between the input and output images."""
    if input_image is None or output_image is None:
        raise gr.Error("Both input and output images are required to create a video.")
    
    try:
        
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
            input_image.save(tmp.name)
            input_image_path = tmp.name
        
        output_pil = Image.fromarray(output_image.astype('uint8'))
        with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
            output_pil.save(tmp.name)
            output_image_path = tmp.name
            
        video_path = _generate_video_segment(
            input_image_path, 
            output_image_path, 
            prompt if prompt else "Relighting transformation",
            request
        )
        return video_path
    except Exception as e:
        raise gr.Error(f"Video generation failed: {e}")


# --- UI ---
css = '''#col-container { max-width: 800px; margin: 0 auto; }
.dark .progress-text{color: white !important}
#examples{max-width: 800px; margin: 0 auto; }'''

def reset_all():
    return ["none", "none", "none", "", False, True]

def end_reset():
    return False

def update_dimensions_on_upload(image):
    if image is None:
        return 1024, 1024
    
    original_width, original_height = image.size
    
    if original_width > original_height:
        new_width = 1024
        aspect_ratio = original_height / original_width
        new_height = int(new_width * aspect_ratio)
    else:
        new_height = 1024
        aspect_ratio = original_width / original_height
        new_width = int(new_height * aspect_ratio)
        
    # Ensure dimensions are multiples of 8
    new_width = (new_width // 8) * 8
    new_height = (new_height // 8) * 8
    
    return new_width, new_height


with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("## 💡 Qwen Image Edit — Relighting Control")
        gr.Markdown("""
            Qwen Image Edit 2509 for Image Relighting ✨ 
            Using [dx8152's Qwen-Image-Edit-2509-Relight LoRA](https://huggingface.co/dx8152/Qwen-Image-Edit-2509-Relight) and [linoyts/Qwen-Image-Edit-Rapid-AIO](https://huggingface.co/linoyts/Qwen-Image-Edit-Rapid-AIO) for 4-step inference 💨
            """
        )
        with gr.Row():
            with gr.Column():
                image = gr.Image(label="Input Image", type="pil")
                prev_output = gr.Image(value=None, visible=False)
                is_reset = gr.Checkbox(value=False, visible=False)

                with gr.Tab("Lighting Controls"):
                    light_type = gr.Dropdown(
                        label="Light Type",
                        choices=[
                            ("None", "none"),
                            ("Soft Window Light (柔和窗光)", "soft_window"),
                            ("Golden Hour (金色黄昏)", "golden_hour"),
                            ("Studio Lighting (摄影棚灯光)", "studio"),
                            ("Dramatic (戏剧性)", "dramatic"),
                            ("Natural Daylight (自然日光)", "natural"),
                            ("Neon (霓虹灯)", "neon"),
                            ("Candlelight (烛光)", "candlelight"),
                            ("Moonlight (月光)", "moonlight"),
                        ],
                        value="none"
                    )
                    
                    light_direction = gr.Dropdown(
                        label="Light Direction",
                        choices=[
                            ("None", "none"),
                            ("Front (正面)", "front"),
                            ("Side (侧面)", "side"),
                            ("Back (背光)", "back"),
                            ("Top (上方)", "top"),
                            ("Bottom (下方)", "bottom"),
                        ],
                        value="none"
                    )
                    
                    light_intensity = gr.Dropdown(
                        label="Light Intensity",
                        choices=[
                            ("None", "none"),
                            ("Soft (柔和)", "soft"),
                            ("Medium (中等)", "medium"),
                            ("Strong (强烈)", "strong"),
                        ],
                        value="none"
                    )
                
                with gr.Tab("Custom Prompt"):
                    prompt = gr.Textbox(
                        label="Relighting Prompt",
                        placeholder="Example: Add warm sunset lighting from the right",
                        lines=3
                    )
                
                with gr.Row():
                    reset_btn = gr.Button("Reset")
                    run_btn = gr.Button("Generate", variant="primary")

                with gr.Accordion("Advanced Settings", open=False):
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                    randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                    true_guidance_scale = gr.Slider(label="True Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
                    num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=4)
                    height = gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024)
                    width = gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024)

            with gr.Column():
                result = gr.Image(label="Output Image", interactive=False)
                prompt_preview = gr.Textbox(label="Processed Prompt", interactive=False)
                create_video_button = gr.Button("🎥 Create Video Between Images", variant="secondary", visible=False)
                with gr.Group(visible=False) as video_group:
                    video_output = gr.Video(label="Generated Video", show_download_button=True, autoplay=True)
                    
    inputs = [
        image, light_type, light_direction, light_intensity, prompt,
        seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output
    ]
    outputs = [result, seed, prompt_preview]

    # Reset behavior
    reset_btn.click(
        fn=reset_all,
        inputs=None,
        outputs=[light_type, light_direction, light_intensity, prompt, is_reset],
        queue=False
    ).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False)

    # Manual generation with video button visibility control
    def infer_and_show_video_button(*args):
        result_img, result_seed, result_prompt = infer_relight(*args)
        # Show video button if we have both input and output images
        show_button = args[0] is not None and result_img is not None
        return result_img, result_seed, result_prompt, gr.update(visible=show_button)
    
    run_event = run_btn.click(
        fn=infer_and_show_video_button, 
        inputs=inputs, 
        outputs=outputs + [create_video_button]
    )

    # Video creation
    create_video_button.click(
        fn=lambda: gr.update(visible=True), 
        outputs=[video_group],
        api_name=False
    ).then(
        fn=create_video_between_images,
        inputs=[image, result, prompt_preview],
        outputs=[video_output],
        api_name=False
    )

    # Examples - You'll need to add your own example images
    gr.Examples(
        examples=[
            [None, "soft_window", "side", "soft", "", 0, True, 1.0, 4, 1024, 1024],
            [None, "golden_hour", "front", "medium", "", 0, True, 1.0, 4, 1024, 1024],
            [None, "dramatic", "side", "strong", "", 0, True, 1.0, 4, 1024, 1024],
            [None, "neon", "front", "medium", "", 0, True, 1.0, 4, 1024, 1024],
            [None, "candlelight", "front", "soft", "", 0, True, 1.0, 4, 1024, 1024],
        ],
        inputs=[image, light_type, light_direction, light_intensity, prompt,
                seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width],
        outputs=outputs,
        fn=infer_relight,
        cache_examples="lazy",
        elem_id="examples"
    )
    
    # Image upload triggers dimension update and control reset
    image.upload(
        fn=update_dimensions_on_upload,
        inputs=[image],
        outputs=[width, height]
    ).then(
        fn=reset_all,
        inputs=None,
        outputs=[light_type, light_direction, light_intensity, prompt, is_reset],
        queue=False
    ).then(
        fn=end_reset, 
        inputs=None, 
        outputs=[is_reset], 
        queue=False
    )


    # Live updates
    def maybe_infer(is_reset, progress=gr.Progress(track_tqdm=True), *args):
        if is_reset:
            return gr.update(), gr.update(), gr.update(), gr.update()
        else:
            result_img, result_seed, result_prompt = infer_relight(*args)
            # Show video button if we have both input and output
            show_button = args[0] is not None and result_img is not None
            return result_img, result_seed, result_prompt, gr.update(visible=show_button)

    control_inputs = [
        image, light_type, light_direction, light_intensity, prompt,
        seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output
    ]
    control_inputs_with_flag = [is_reset] + control_inputs

    for control in [light_type, light_direction, light_intensity]:
        control.input(fn=maybe_infer, inputs=control_inputs_with_flag, outputs=outputs + [create_video_button])
    
    run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output])

demo.launch()