import gradio as gr import numpy as np import random import torch import spaces from PIL import Image from diffusers import FlowMatchEulerDiscreteScheduler from optimization import optimize_pipeline_ from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 import math from huggingface_hub import hf_hub_download from safetensors.torch import load_file from PIL import Image import os import gradio as gr from gradio_client import Client, handle_file import tempfile from huggingface_hub import InferenceClient # --- Model Loading --- dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO", subfolder='transformer', torch_dtype=dtype, device_map='cuda'),torch_dtype=dtype).to(device) # Load the relight LoRA pipe.load_lora_weights( "dx8152/Qwen-Image-Edit-2509-Relight", weight_name="Qwen-Edit-Relight.safetensors", adapter_name="relight" ) pipe.set_adapters(["relight"], adapter_weights=[1.]) pipe.fuse_lora(adapter_names=["relight"], lora_scale=1.25) pipe.unload_lora_weights() pipe.transformer.__class__ = QwenImageTransformer2DModel pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt") MAX_SEED = np.iinfo(np.int32).max # Initialize translation client translation_client = InferenceClient( api_key=os.environ.get("HF_TOKEN"), ) def translate_to_chinese(text: str) -> str: """Translate any language text to Chinese using Qwen API.""" if not text or not text.strip(): return "" # Check if text is already primarily Chinese chinese_chars = sum(1 for char in text if '\u4e00' <= char <= '\u9fff') if chinese_chars / max(len(text), 1) > 0.5: # Already mostly Chinese, return as is return text try: completion = translation_client.chat.completions.create( model="Qwen/Qwen3-Next-80B-A3B-Instruct:novita", messages=[ { "role": "system", "content": "You are a professional translator. Translate the user's text to Chinese. Only output the translated text, nothing else." }, { "role": "user", "content": f"Translate this to Chinese: {text}" } ], max_tokens=500, ) translated = completion.choices[0].message.content.strip() print(f"Translated '{text}' to '{translated}'") return translated except Exception as e: print(f"Translation error: {e}") # Fallback to original text if translation fails return text def _generate_video_segment(input_image_path: str, output_image_path: str, prompt: str, request: gr.Request) -> str: """Generates a single video segment using the external service.""" x_ip_token = request.headers['x-ip-token'] video_client = Client("multimodalart/wan-2-2-first-last-frame", headers={"x-ip-token": x_ip_token}) result = video_client.predict( start_image_pil=handle_file(input_image_path), end_image_pil=handle_file(output_image_path), prompt=prompt, api_name="/generate_video", ) return result[0]["video"] def build_relight_prompt(light_type, light_direction, light_intensity, prompt): """Build the relighting prompt based on user selections.""" # Priority 1: User's prompt (translated to Chinese if needed) if prompt and prompt.strip(): translated = translate_to_chinese(prompt) # Add trigger word if not already present if "重新照明" not in translated: return f"重新照明,{translated}" return translated # Priority 2: Build from controls prompt_parts = ["重新照明"] # Light type descriptions light_descriptions = { "soft_window": "使用窗帘透光(柔和漫射)的光线", # Soft diffuse light from curtains "golden_hour": "使用金色黄昏的温暖光线", # Warm golden hour light "studio": "使用专业摄影棚的均匀光线", # Professional studio lighting "dramatic": "使用戏剧性的高对比度光线", # Dramatic high-contrast lighting "natural": "使用自然日光", # Natural daylight "neon": "使用霓虹灯光效果", # Neon lighting effect "candlelight": "使用烛光的温暖氛围", # Warm candlelight ambiance "moonlight": "使用月光的冷色调", # Cool-toned moonlight } # Direction descriptions direction_descriptions = { "front": "从正面照射", # From the front "side": "从侧面照射", # From the side "back": "从背后照射", # From behind (backlight) "top": "从上方照射", # From above "bottom": "从下方照射", # From below } # Intensity descriptions intensity_descriptions = { "soft": "柔和强度", # Soft intensity "medium": "中等强度", # Medium intensity "strong": "强烈强度", # Strong intensity } # Build the prompt if light_type != "none": prompt_parts.append(light_descriptions.get(light_type, "")) if light_direction != "none": prompt_parts.append(direction_descriptions.get(light_direction, "")) if light_intensity != "none": prompt_parts.append(intensity_descriptions.get(light_intensity, "")) final_prompt = ",".join([p for p in prompt_parts if p]) # Add instruction if we have settings if len(prompt_parts) > 1: final_prompt += "对图片进行重新照明" # Relight the image return final_prompt if len(prompt_parts) > 1 else "重新照明,使用自然光线对图片进行重新照明" @spaces.GPU def infer_relight( image, light_type, light_direction, light_intensity, prompt, seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output = None, progress=gr.Progress(track_tqdm=True) ): final_prompt = build_relight_prompt(light_type, light_direction, light_intensity, prompt) print(f"Generated Prompt: {final_prompt}") if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(seed) # Choose input image (prefer uploaded, else last output) pil_images = [] if image is not None: if isinstance(image, Image.Image): pil_images.append(image.convert("RGB")) elif hasattr(image, "name"): pil_images.append(Image.open(image.name).convert("RGB")) elif prev_output: pil_images.append(prev_output.convert("RGB")) if len(pil_images) == 0: raise gr.Error("Please upload an image first.") result = pipe( image=pil_images, prompt=final_prompt, height=height if height != 0 else None, width=width if width != 0 else None, num_inference_steps=num_inference_steps, generator=generator, true_cfg_scale=true_guidance_scale, num_images_per_prompt=1, ).images[0] return result, seed, final_prompt def create_video_between_images(input_image, output_image, prompt: str, request: gr.Request) -> str: """Create a video between the input and output images.""" if input_image is None or output_image is None: raise gr.Error("Both input and output images are required to create a video.") try: with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp: input_image.save(tmp.name) input_image_path = tmp.name output_pil = Image.fromarray(output_image.astype('uint8')) with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp: output_pil.save(tmp.name) output_image_path = tmp.name video_path = _generate_video_segment( input_image_path, output_image_path, prompt if prompt else "Relighting transformation", request ) return video_path except Exception as e: raise gr.Error(f"Video generation failed: {e}") # --- UI --- css = '''#col-container { max-width: 800px; margin: 0 auto; } .dark .progress-text{color: white !important} #examples{max-width: 800px; margin: 0 auto; }''' def reset_all(): return ["none", "none", "none", "", False, True] def end_reset(): return False def update_dimensions_on_upload(image): if image is None: return 1024, 1024 original_width, original_height = image.size if original_width > original_height: new_width = 1024 aspect_ratio = original_height / original_width new_height = int(new_width * aspect_ratio) else: new_height = 1024 aspect_ratio = original_width / original_height new_width = int(new_height * aspect_ratio) # Ensure dimensions are multiples of 8 new_width = (new_width // 8) * 8 new_height = (new_height // 8) * 8 return new_width, new_height with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("## 💡 Qwen Image Edit — Relighting Control") gr.Markdown(""" Qwen Image Edit 2509 for Image Relighting ✨ Using [dx8152's Qwen-Image-Edit-2509-Relight LoRA](https://huggingface.co/dx8152/Qwen-Image-Edit-2509-Relight) and [linoyts/Qwen-Image-Edit-Rapid-AIO](https://huggingface.co/linoyts/Qwen-Image-Edit-Rapid-AIO) for 4-step inference 💨 """ ) with gr.Row(): with gr.Column(): image = gr.Image(label="Input Image", type="pil") prev_output = gr.Image(value=None, visible=False) is_reset = gr.Checkbox(value=False, visible=False) with gr.Tab("Lighting Controls"): light_type = gr.Dropdown( label="Light Type", choices=[ ("None", "none"), ("Soft Window Light (柔和窗光)", "soft_window"), ("Golden Hour (金色黄昏)", "golden_hour"), ("Studio Lighting (摄影棚灯光)", "studio"), ("Dramatic (戏剧性)", "dramatic"), ("Natural Daylight (自然日光)", "natural"), ("Neon (霓虹灯)", "neon"), ("Candlelight (烛光)", "candlelight"), ("Moonlight (月光)", "moonlight"), ], value="none" ) light_direction = gr.Dropdown( label="Light Direction", choices=[ ("None", "none"), ("Front (正面)", "front"), ("Side (侧面)", "side"), ("Back (背光)", "back"), ("Top (上方)", "top"), ("Bottom (下方)", "bottom"), ], value="none" ) light_intensity = gr.Dropdown( label="Light Intensity", choices=[ ("None", "none"), ("Soft (柔和)", "soft"), ("Medium (中等)", "medium"), ("Strong (强烈)", "strong"), ], value="none" ) with gr.Tab("Custom Prompt"): prompt = gr.Textbox( label="Relighting Prompt", placeholder="Example: Add warm sunset lighting from the right", lines=3 ) with gr.Row(): reset_btn = gr.Button("Reset") run_btn = gr.Button("Generate", variant="primary") with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) true_guidance_scale = gr.Slider(label="True Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0) num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=4) height = gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024) width = gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024) with gr.Column(): result = gr.Image(label="Output Image", interactive=False) prompt_preview = gr.Textbox(label="Processed Prompt", interactive=False) create_video_button = gr.Button("🎥 Create Video Between Images", variant="secondary", visible=False) with gr.Group(visible=False) as video_group: video_output = gr.Video(label="Generated Video", show_download_button=True, autoplay=True) inputs = [ image, light_type, light_direction, light_intensity, prompt, seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output ] outputs = [result, seed, prompt_preview] # Reset behavior reset_btn.click( fn=reset_all, inputs=None, outputs=[light_type, light_direction, light_intensity, prompt, is_reset], queue=False ).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False) # Manual generation with video button visibility control def infer_and_show_video_button(*args): result_img, result_seed, result_prompt = infer_relight(*args) # Show video button if we have both input and output images show_button = args[0] is not None and result_img is not None return result_img, result_seed, result_prompt, gr.update(visible=show_button) run_event = run_btn.click( fn=infer_and_show_video_button, inputs=inputs, outputs=outputs + [create_video_button] ) # Video creation create_video_button.click( fn=lambda: gr.update(visible=True), outputs=[video_group], api_name=False ).then( fn=create_video_between_images, inputs=[image, result, prompt_preview], outputs=[video_output], api_name=False ) # Examples - You'll need to add your own example images gr.Examples( examples=[ [None, "soft_window", "side", "soft", "", 0, True, 1.0, 4, 1024, 1024], [None, "golden_hour", "front", "medium", "", 0, True, 1.0, 4, 1024, 1024], [None, "dramatic", "side", "strong", "", 0, True, 1.0, 4, 1024, 1024], [None, "neon", "front", "medium", "", 0, True, 1.0, 4, 1024, 1024], [None, "candlelight", "front", "soft", "", 0, True, 1.0, 4, 1024, 1024], ], inputs=[image, light_type, light_direction, light_intensity, prompt, seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width], outputs=outputs, fn=infer_relight, cache_examples="lazy", elem_id="examples" ) # Image upload triggers dimension update and control reset image.upload( fn=update_dimensions_on_upload, inputs=[image], outputs=[width, height] ).then( fn=reset_all, inputs=None, outputs=[light_type, light_direction, light_intensity, prompt, is_reset], queue=False ).then( fn=end_reset, inputs=None, outputs=[is_reset], queue=False ) # Live updates def maybe_infer(is_reset, progress=gr.Progress(track_tqdm=True), *args): if is_reset: return gr.update(), gr.update(), gr.update(), gr.update() else: result_img, result_seed, result_prompt = infer_relight(*args) # Show video button if we have both input and output show_button = args[0] is not None and result_img is not None return result_img, result_seed, result_prompt, gr.update(visible=show_button) control_inputs = [ image, light_type, light_direction, light_intensity, prompt, seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output ] control_inputs_with_flag = [is_reset] + control_inputs for control in [light_type, light_direction, light_intensity]: control.input(fn=maybe_infer, inputs=control_inputs_with_flag, outputs=outputs + [create_video_button]) run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output]) demo.launch()