File size: 6,290 Bytes
935d12d
ffda1f9
 
 
a768964
ffda1f9
a768964
ffda1f9
 
 
 
 
 
 
 
 
 
a768964
ffda1f9
a768964
 
ffda1f9
 
a768964
ffda1f9
 
da9e0ce
a768964
ffda1f9
 
a768964
ffda1f9
 
a768964
da9e0ce
 
 
 
ffda1f9
 
 
 
 
 
 
a768964
ffda1f9
 
 
da9e0ce
ffda1f9
a768964
ffda1f9
 
 
 
da9e0ce
ffda1f9
a768964
ffda1f9
 
da9e0ce
a768964
ffda1f9
 
 
 
 
 
 
 
da9e0ce
ffda1f9
 
da9e0ce
ffda1f9
 
 
 
 
 
 
 
a768964
ffda1f9
 
a768964
ffda1f9
 
 
 
 
da9e0ce
 
a768964
da9e0ce
a768964
ffda1f9
 
 
1e4a65e
935d12d
9325c19
df1ed5e
9325c19
935d12d
9325c19
 
935d12d
 
 
9325c19
935d12d
9325c19
935d12d
 
9325c19
935d12d
 
 
 
df1ed5e
9325c19
 
 
7acae8b
9325c19
 
 
935d12d
9325c19
 
 
935d12d
9325c19
 
935d12d
 
df1ed5e
9325c19
 
df1ed5e
9325c19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df1ed5e
 
 
 
 
 
 
 
 
 
 
 
 
9325c19
 
 
df1ed5e
9325c19
 
df1ed5e
 
9325c19
 
df1ed5e
 
 
9325c19
df1ed5e
7a6dca4
df1ed5e
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
"""from fastapi import FastAPI, Form, File, UploadFile
from fastapi.responses import RedirectResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
from transformers import pipeline
import os
from PIL import Image
import io
import pdfplumber
import docx
import openpyxl
import pytesseract
from io import BytesIO
import fitz  # PyMuPDF
import easyocr
from fastapi.templating import Jinja2Templates
from starlette.requests import Request

# Initialize the app
app = FastAPI()

# Mount the static directory to serve HTML, CSS, JS files
app.mount("/static", StaticFiles(directory="static"), name="static")

# Initialize transformers pipelines
qa_pipeline = pipeline("question-answering", model="microsoft/phi-2", tokenizer="microsoft/phi-2")
image_qa_pipeline = pipeline("vqa", model="Salesforce/blip-vqa-base")

# Initialize EasyOCR for image-based text extraction
reader = easyocr.Reader(['en'])

# Define a template for rendering HTML
templates = Jinja2Templates(directory="templates")

# Ensure temp_files directory exists
temp_dir = "temp_files"
os.makedirs(temp_dir, exist_ok=True)

# Function to process PDFs
def extract_pdf_text(file_path: str):
    with pdfplumber.open(file_path) as pdf:
        text = ""
        for page in pdf.pages:
            text += page.extract_text()
    return text

# Function to process DOCX files
def extract_docx_text(file_path: str):
    doc = docx.Document(file_path)
    text = "\n".join([para.text for para in doc.paragraphs])
    return text

# Function to process PPTX files
def extract_pptx_text(file_path: str):
    from pptx import Presentation
    prs = Presentation(file_path)
    text = "\n".join([shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")])
    return text

# Function to extract text from images using OCR
def extract_text_from_image(image: Image):
    return pytesseract.image_to_string(image)

# Home route
@app.get("/")
def home():
    return RedirectResponse(url="/docs")

# Function to answer questions based on document content
@app.post("/question-answering-doc")
async def question_answering_doc(question: str = Form(...), file: UploadFile = File(...)):
    file_path = os.path.join(temp_dir, file.filename)
    with open(file_path, "wb") as f:
        f.write(await file.read())

    if file.filename.endswith(".pdf"):
        text = extract_pdf_text(file_path)
    elif file.filename.endswith(".docx"):
        text = extract_docx_text(file_path)
    elif file.filename.endswith(".pptx"):
        text = extract_pptx_text(file_path)
    else:
        return {"error": "Unsupported file format"}

    qa_result = qa_pipeline(question=question, context=text)
    return {"answer": qa_result['answer']}

# Function to answer questions based on images
@app.post("/question-answering-image")
async def question_answering_image(question: str = Form(...), image_file: UploadFile = File(...)):
    image = Image.open(BytesIO(await image_file.read()))
    image_text = extract_text_from_image(image)

    image_qa_result = image_qa_pipeline({"image": image, "question": question})
    
    return {"answer": image_qa_result[0]['answer'], "image_text": image_text}

# Serve the application in Hugging Face space
@app.get("/docs")
async def get_docs(request: Request):
    return templates.TemplateResponse("index.html", {"request": request})
"""
from fastapi import FastAPI
from fastapi.responses import RedirectResponse
import gradio as gr
from transformers import pipeline
import pdfplumber, docx
from pptx import Presentation
from PIL import Image
import pytesseract
import easyocr
import os

# Initialize FastAPI app
app = FastAPI()

# Load models
qa_pipeline = pipeline("question-answering", model="microsoft/phi-2", tokenizer="microsoft/phi-2")
image_qa_pipeline = pipeline("vqa", model="Salesforce/blip-vqa-base")
reader = easyocr.Reader(['en'])

# File parsing functions
def extract_text_from_pdf(file):
    with pdfplumber.open(file) as pdf:
        return "\n".join(page.extract_text() for page in pdf.pages if page.extract_text())

def extract_text_from_docx(file):
    doc = docx.Document(file)
    return "\n".join(para.text for para in doc.paragraphs)

def extract_text_from_pptx(file):
    prs = Presentation(file)
    return "\n".join(shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text"))

def extract_text_from_image(file):
    image = Image.open(file)
    return pytesseract.image_to_string(image)

# Main QA logic for documents and images
def answer_question(question, file):
    file_ext = os.path.splitext(file.name)[-1].lower()

    if file_ext == ".pdf":
        context = extract_text_from_pdf(file)
    elif file_ext == ".docx":
        context = extract_text_from_docx(file)
    elif file_ext == ".pptx":
        context = extract_text_from_pptx(file)
    elif file_ext in [".png", ".jpg", ".jpeg", ".bmp"]:
        context = extract_text_from_image(file)
    else:
        return "❌ Unsupported file format."

    if not context.strip():
        return "⚠️ No readable text found in the document."

    result = qa_pipeline(question=question, context=context)
    return result["answer"]

# Create Gradio interfaces for both document and image QA
doc_interface = gr.Interface(
    fn=answer_question,
    inputs=[
        gr.Textbox(label="Ask a question"),
        gr.File(label="Upload a document (PDF, DOCX, PPTX)")
    ],
    outputs=gr.Textbox(label="Answer"),
    title="Document Question Answering",
    description="Upload a document and ask a question. Get answers from the document content.",
)

img_interface = gr.Interface(
    fn=answer_question,
    inputs=[
        gr.Textbox(label="Ask a question"),
        gr.File(label="Upload an image (PNG, JPG, etc.)")
    ],
    outputs=gr.Textbox(label="Answer"),
    title="Image Question Answering",
    description="Upload an image and ask a question. Get answers from the text extracted from the image.",
)

# Create a Tabbed Interface to switch between document and image QA
demo = gr.TabbedInterface([doc_interface, img_interface], ["Document QA", "Image QA"])

# Mount Gradio app in FastAPI
app = gr.mount_gradio_app(app, demo, path="/")

# Redirect to Gradio interface
@app.get("/")
def home():
    return RedirectResponse(url="/")