Spaces:
Sleeping
Sleeping
File size: 6,290 Bytes
935d12d ffda1f9 a768964 ffda1f9 a768964 ffda1f9 a768964 ffda1f9 a768964 ffda1f9 a768964 ffda1f9 da9e0ce a768964 ffda1f9 a768964 ffda1f9 a768964 da9e0ce ffda1f9 a768964 ffda1f9 da9e0ce ffda1f9 a768964 ffda1f9 da9e0ce ffda1f9 a768964 ffda1f9 da9e0ce a768964 ffda1f9 da9e0ce ffda1f9 da9e0ce ffda1f9 a768964 ffda1f9 a768964 ffda1f9 da9e0ce a768964 da9e0ce a768964 ffda1f9 1e4a65e 935d12d 9325c19 df1ed5e 9325c19 935d12d 9325c19 935d12d 9325c19 935d12d 9325c19 935d12d 9325c19 935d12d df1ed5e 9325c19 7acae8b 9325c19 935d12d 9325c19 935d12d 9325c19 935d12d df1ed5e 9325c19 df1ed5e 9325c19 df1ed5e 9325c19 df1ed5e 9325c19 df1ed5e 9325c19 df1ed5e 9325c19 df1ed5e 7a6dca4 df1ed5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
"""from fastapi import FastAPI, Form, File, UploadFile
from fastapi.responses import RedirectResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
from transformers import pipeline
import os
from PIL import Image
import io
import pdfplumber
import docx
import openpyxl
import pytesseract
from io import BytesIO
import fitz # PyMuPDF
import easyocr
from fastapi.templating import Jinja2Templates
from starlette.requests import Request
# Initialize the app
app = FastAPI()
# Mount the static directory to serve HTML, CSS, JS files
app.mount("/static", StaticFiles(directory="static"), name="static")
# Initialize transformers pipelines
qa_pipeline = pipeline("question-answering", model="microsoft/phi-2", tokenizer="microsoft/phi-2")
image_qa_pipeline = pipeline("vqa", model="Salesforce/blip-vqa-base")
# Initialize EasyOCR for image-based text extraction
reader = easyocr.Reader(['en'])
# Define a template for rendering HTML
templates = Jinja2Templates(directory="templates")
# Ensure temp_files directory exists
temp_dir = "temp_files"
os.makedirs(temp_dir, exist_ok=True)
# Function to process PDFs
def extract_pdf_text(file_path: str):
with pdfplumber.open(file_path) as pdf:
text = ""
for page in pdf.pages:
text += page.extract_text()
return text
# Function to process DOCX files
def extract_docx_text(file_path: str):
doc = docx.Document(file_path)
text = "\n".join([para.text for para in doc.paragraphs])
return text
# Function to process PPTX files
def extract_pptx_text(file_path: str):
from pptx import Presentation
prs = Presentation(file_path)
text = "\n".join([shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")])
return text
# Function to extract text from images using OCR
def extract_text_from_image(image: Image):
return pytesseract.image_to_string(image)
# Home route
@app.get("/")
def home():
return RedirectResponse(url="/docs")
# Function to answer questions based on document content
@app.post("/question-answering-doc")
async def question_answering_doc(question: str = Form(...), file: UploadFile = File(...)):
file_path = os.path.join(temp_dir, file.filename)
with open(file_path, "wb") as f:
f.write(await file.read())
if file.filename.endswith(".pdf"):
text = extract_pdf_text(file_path)
elif file.filename.endswith(".docx"):
text = extract_docx_text(file_path)
elif file.filename.endswith(".pptx"):
text = extract_pptx_text(file_path)
else:
return {"error": "Unsupported file format"}
qa_result = qa_pipeline(question=question, context=text)
return {"answer": qa_result['answer']}
# Function to answer questions based on images
@app.post("/question-answering-image")
async def question_answering_image(question: str = Form(...), image_file: UploadFile = File(...)):
image = Image.open(BytesIO(await image_file.read()))
image_text = extract_text_from_image(image)
image_qa_result = image_qa_pipeline({"image": image, "question": question})
return {"answer": image_qa_result[0]['answer'], "image_text": image_text}
# Serve the application in Hugging Face space
@app.get("/docs")
async def get_docs(request: Request):
return templates.TemplateResponse("index.html", {"request": request})
"""
from fastapi import FastAPI
from fastapi.responses import RedirectResponse
import gradio as gr
from transformers import pipeline
import pdfplumber, docx
from pptx import Presentation
from PIL import Image
import pytesseract
import easyocr
import os
# Initialize FastAPI app
app = FastAPI()
# Load models
qa_pipeline = pipeline("question-answering", model="microsoft/phi-2", tokenizer="microsoft/phi-2")
image_qa_pipeline = pipeline("vqa", model="Salesforce/blip-vqa-base")
reader = easyocr.Reader(['en'])
# File parsing functions
def extract_text_from_pdf(file):
with pdfplumber.open(file) as pdf:
return "\n".join(page.extract_text() for page in pdf.pages if page.extract_text())
def extract_text_from_docx(file):
doc = docx.Document(file)
return "\n".join(para.text for para in doc.paragraphs)
def extract_text_from_pptx(file):
prs = Presentation(file)
return "\n".join(shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text"))
def extract_text_from_image(file):
image = Image.open(file)
return pytesseract.image_to_string(image)
# Main QA logic for documents and images
def answer_question(question, file):
file_ext = os.path.splitext(file.name)[-1].lower()
if file_ext == ".pdf":
context = extract_text_from_pdf(file)
elif file_ext == ".docx":
context = extract_text_from_docx(file)
elif file_ext == ".pptx":
context = extract_text_from_pptx(file)
elif file_ext in [".png", ".jpg", ".jpeg", ".bmp"]:
context = extract_text_from_image(file)
else:
return "❌ Unsupported file format."
if not context.strip():
return "⚠️ No readable text found in the document."
result = qa_pipeline(question=question, context=context)
return result["answer"]
# Create Gradio interfaces for both document and image QA
doc_interface = gr.Interface(
fn=answer_question,
inputs=[
gr.Textbox(label="Ask a question"),
gr.File(label="Upload a document (PDF, DOCX, PPTX)")
],
outputs=gr.Textbox(label="Answer"),
title="Document Question Answering",
description="Upload a document and ask a question. Get answers from the document content.",
)
img_interface = gr.Interface(
fn=answer_question,
inputs=[
gr.Textbox(label="Ask a question"),
gr.File(label="Upload an image (PNG, JPG, etc.)")
],
outputs=gr.Textbox(label="Answer"),
title="Image Question Answering",
description="Upload an image and ask a question. Get answers from the text extracted from the image.",
)
# Create a Tabbed Interface to switch between document and image QA
demo = gr.TabbedInterface([doc_interface, img_interface], ["Document QA", "Image QA"])
# Mount Gradio app in FastAPI
app = gr.mount_gradio_app(app, demo, path="/")
# Redirect to Gradio interface
@app.get("/")
def home():
return RedirectResponse(url="/")
|