Spaces:
Sleeping
Sleeping
the paid version of chatgbt of the app
Browse files
app.py
CHANGED
|
@@ -100,129 +100,78 @@ async def question_answering_image(question: str = Form(...), image_file: Upload
|
|
| 100 |
async def get_docs(request: Request):
|
| 101 |
return templates.TemplateResponse("index.html", {"request": request})
|
| 102 |
"""
|
| 103 |
-
from fastapi import FastAPI
|
| 104 |
-
|
| 105 |
-
from fastapi.staticfiles import StaticFiles
|
| 106 |
-
from pydantic import BaseModel
|
| 107 |
from transformers import pipeline
|
| 108 |
-
import
|
|
|
|
| 109 |
from PIL import Image
|
| 110 |
-
import io
|
| 111 |
-
import pdfplumber
|
| 112 |
-
import docx
|
| 113 |
import pytesseract
|
| 114 |
-
|
| 115 |
-
import fitz # PyMuPDF
|
| 116 |
import easyocr
|
| 117 |
-
|
| 118 |
-
from starlette.requests import Request
|
| 119 |
|
| 120 |
-
# Initialize
|
| 121 |
app = FastAPI()
|
| 122 |
|
| 123 |
-
#
|
| 124 |
-
app.mount("/static", StaticFiles(directory="static"), name="static")
|
| 125 |
-
|
| 126 |
-
# Define a template for rendering HTML
|
| 127 |
-
templates = Jinja2Templates(directory="templates")
|
| 128 |
-
|
| 129 |
-
# Initialize transformers pipelines
|
| 130 |
qa_pipeline = pipeline("question-answering", model="microsoft/phi-2", tokenizer="microsoft/phi-2")
|
| 131 |
image_qa_pipeline = pipeline("vqa", model="Salesforce/blip-vqa-base")
|
| 132 |
-
|
| 133 |
-
# Initialize EasyOCR for image-based text extraction
|
| 134 |
reader = easyocr.Reader(['en'])
|
| 135 |
|
| 136 |
-
#
|
| 137 |
-
|
|
|
|
|
|
|
| 138 |
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
text = ""
|
| 143 |
-
for page in pdf.pages:
|
| 144 |
-
text += page.extract_text()
|
| 145 |
-
return text
|
| 146 |
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
text = "\n".join([para.text for para in doc.paragraphs])
|
| 151 |
-
return text
|
| 152 |
-
|
| 153 |
-
# Function to process PPTX files
|
| 154 |
-
def extract_pptx_text(file_path: str):
|
| 155 |
-
from pptx import Presentation
|
| 156 |
-
prs = Presentation(file_path)
|
| 157 |
-
text = "\n".join([shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")])
|
| 158 |
-
return text
|
| 159 |
|
| 160 |
-
|
| 161 |
-
|
| 162 |
return pytesseract.image_to_string(image)
|
| 163 |
|
| 164 |
-
#
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
return templates.TemplateResponse("index.html", {"request": request})
|
| 168 |
-
|
| 169 |
-
# Function to answer questions based on document content
|
| 170 |
-
@app.post("/question-answering-doc")
|
| 171 |
-
async def question_answering_doc(request: Request, question: str = Form(...), file: UploadFile = File(...)):
|
| 172 |
-
# Validate file size
|
| 173 |
-
if file.spool_max_size > MAX_FILE_SIZE:
|
| 174 |
-
raise HTTPException(status_code=400, detail=f"File size exceeds the {MAX_FILE_SIZE / (1024 * 1024)} MB limit.")
|
| 175 |
-
|
| 176 |
-
try:
|
| 177 |
-
# Read the file content into memory
|
| 178 |
-
file_content = await file.read()
|
| 179 |
-
|
| 180 |
-
# Extract text based on the file type
|
| 181 |
-
if file.filename.endswith(".pdf"):
|
| 182 |
-
file_path = "/tmp/tempfile.pdf"
|
| 183 |
-
with open(file_path, "wb") as f:
|
| 184 |
-
f.write(file_content)
|
| 185 |
-
text = extract_pdf_text(file_path)
|
| 186 |
-
os.remove(file_path)
|
| 187 |
-
elif file.filename.endswith(".docx"):
|
| 188 |
-
file_path = "/tmp/tempfile.docx"
|
| 189 |
-
with open(file_path, "wb") as f:
|
| 190 |
-
f.write(file_content)
|
| 191 |
-
text = extract_docx_text(file_path)
|
| 192 |
-
os.remove(file_path)
|
| 193 |
-
elif file.filename.endswith(".pptx"):
|
| 194 |
-
file_path = "/tmp/tempfile.pptx"
|
| 195 |
-
with open(file_path, "wb") as f:
|
| 196 |
-
f.write(file_content)
|
| 197 |
-
text = extract_pptx_text(file_path)
|
| 198 |
-
os.remove(file_path)
|
| 199 |
-
else:
|
| 200 |
-
raise HTTPException(status_code=400, detail="Unsupported file format")
|
| 201 |
-
except Exception as e:
|
| 202 |
-
raise HTTPException(status_code=500, detail=f"An error occurred while processing the file: {str(e)}")
|
| 203 |
-
|
| 204 |
-
qa_result = qa_pipeline(question=question, context=text)
|
| 205 |
-
|
| 206 |
-
return templates.TemplateResponse("index.html", {"request": request, "answer": qa_result['answer']})
|
| 207 |
-
|
| 208 |
-
# Function to answer questions based on images
|
| 209 |
-
@app.post("/question-answering-image")
|
| 210 |
-
async def question_answering_image(request: Request, question: str = Form(...), image_file: UploadFile = File(...)):
|
| 211 |
-
# Validate file size
|
| 212 |
-
if image_file.spool_max_size > MAX_FILE_SIZE:
|
| 213 |
-
raise HTTPException(status_code=400, detail=f"File size exceeds the {MAX_FILE_SIZE / (1024 * 1024)} MB limit.")
|
| 214 |
-
|
| 215 |
-
image = Image.open(BytesIO(await image_file.read()))
|
| 216 |
-
image_text = extract_text_from_image(image)
|
| 217 |
-
|
| 218 |
-
image_qa_result = image_qa_pipeline({"image": image, "question": question})
|
| 219 |
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
-
|
| 226 |
-
@app.get("/question-answering-doc")
|
| 227 |
-
async def get_docs(request: Request):
|
| 228 |
-
return templates.TemplateResponse("index.html", {"request": request})
|
|
|
|
| 100 |
async def get_docs(request: Request):
|
| 101 |
return templates.TemplateResponse("index.html", {"request": request})
|
| 102 |
"""
|
| 103 |
+
from fastapi import FastAPI
|
| 104 |
+
import gradio as gr
|
|
|
|
|
|
|
| 105 |
from transformers import pipeline
|
| 106 |
+
import pdfplumber, docx
|
| 107 |
+
from pptx import Presentation
|
| 108 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
| 109 |
import pytesseract
|
| 110 |
+
import fitz
|
|
|
|
| 111 |
import easyocr
|
| 112 |
+
import os
|
|
|
|
| 113 |
|
| 114 |
+
# Initialize FastAPI app
|
| 115 |
app = FastAPI()
|
| 116 |
|
| 117 |
+
# Load models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
qa_pipeline = pipeline("question-answering", model="microsoft/phi-2", tokenizer="microsoft/phi-2")
|
| 119 |
image_qa_pipeline = pipeline("vqa", model="Salesforce/blip-vqa-base")
|
|
|
|
|
|
|
| 120 |
reader = easyocr.Reader(['en'])
|
| 121 |
|
| 122 |
+
# File parsing
|
| 123 |
+
def extract_text_from_pdf(file):
|
| 124 |
+
with pdfplumber.open(file) as pdf:
|
| 125 |
+
return "\n".join(page.extract_text() for page in pdf.pages if page.extract_text())
|
| 126 |
|
| 127 |
+
def extract_text_from_docx(file):
|
| 128 |
+
doc = docx.Document(file)
|
| 129 |
+
return "\n".join(para.text for para in doc.paragraphs)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
+
def extract_text_from_pptx(file):
|
| 132 |
+
prs = Presentation(file)
|
| 133 |
+
return "\n".join(shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text"))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
+
def extract_text_from_image(file):
|
| 136 |
+
image = Image.open(file)
|
| 137 |
return pytesseract.image_to_string(image)
|
| 138 |
|
| 139 |
+
# Main QA logic
|
| 140 |
+
def answer_question(question, file):
|
| 141 |
+
file_ext = os.path.splitext(file.name)[-1].lower()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
+
if file_ext == ".pdf":
|
| 144 |
+
context = extract_text_from_pdf(file)
|
| 145 |
+
elif file_ext == ".docx":
|
| 146 |
+
context = extract_text_from_docx(file)
|
| 147 |
+
elif file_ext == ".pptx":
|
| 148 |
+
context = extract_text_from_pptx(file)
|
| 149 |
+
elif file_ext in [".png", ".jpg", ".jpeg", ".bmp"]:
|
| 150 |
+
context = extract_text_from_image(file)
|
| 151 |
+
else:
|
| 152 |
+
return "❌ Unsupported file format."
|
| 153 |
+
|
| 154 |
+
if not context.strip():
|
| 155 |
+
return "⚠️ No readable text found in the document."
|
| 156 |
+
|
| 157 |
+
result = qa_pipeline(question=question, context=context)
|
| 158 |
+
return result["answer"]
|
| 159 |
+
|
| 160 |
+
# Gradio interface
|
| 161 |
+
gr_interface = gr.Interface(
|
| 162 |
+
fn=answer_question,
|
| 163 |
+
inputs=[
|
| 164 |
+
gr.Textbox(label="Ask a question"),
|
| 165 |
+
gr.File(label="Upload a document or image")
|
| 166 |
+
],
|
| 167 |
+
outputs=gr.Textbox(label="Answer"),
|
| 168 |
+
title="AI Question Answering (Text & Image)",
|
| 169 |
+
description="Upload a file (PDF, DOCX, PPTX, Image) and ask a question. Get instant answers from document content.",
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
# Mount Gradio app in FastAPI
|
| 173 |
+
@app.get("/")
|
| 174 |
+
def redirect_root():
|
| 175 |
+
return {"message": "Visit /gradio for the interface."}
|
| 176 |
|
| 177 |
+
app = gr.mount_gradio_app(app, gr_interface, path="/gradio")
|
|
|
|
|
|
|
|
|