Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -101,13 +101,13 @@ async def get_docs(request: Request):
|
|
| 101 |
return templates.TemplateResponse("index.html", {"request": request})
|
| 102 |
"""
|
| 103 |
from fastapi import FastAPI
|
|
|
|
| 104 |
import gradio as gr
|
| 105 |
from transformers import pipeline
|
| 106 |
import pdfplumber, docx
|
| 107 |
from pptx import Presentation
|
| 108 |
from PIL import Image
|
| 109 |
import pytesseract
|
| 110 |
-
import fitz
|
| 111 |
import easyocr
|
| 112 |
import os
|
| 113 |
|
|
@@ -119,7 +119,7 @@ qa_pipeline = pipeline("question-answering", model="microsoft/phi-2", tokenizer=
|
|
| 119 |
image_qa_pipeline = pipeline("vqa", model="Salesforce/blip-vqa-base")
|
| 120 |
reader = easyocr.Reader(['en'])
|
| 121 |
|
| 122 |
-
# File parsing
|
| 123 |
def extract_text_from_pdf(file):
|
| 124 |
with pdfplumber.open(file) as pdf:
|
| 125 |
return "\n".join(page.extract_text() for page in pdf.pages if page.extract_text())
|
|
@@ -136,10 +136,10 @@ def extract_text_from_image(file):
|
|
| 136 |
image = Image.open(file)
|
| 137 |
return pytesseract.image_to_string(image)
|
| 138 |
|
| 139 |
-
# Main QA logic
|
| 140 |
def answer_question(question, file):
|
| 141 |
file_ext = os.path.splitext(file.name)[-1].lower()
|
| 142 |
-
|
| 143 |
if file_ext == ".pdf":
|
| 144 |
context = extract_text_from_pdf(file)
|
| 145 |
elif file_ext == ".docx":
|
|
@@ -157,21 +157,36 @@ def answer_question(question, file):
|
|
| 157 |
result = qa_pipeline(question=question, context=context)
|
| 158 |
return result["answer"]
|
| 159 |
|
| 160 |
-
# Gradio
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
fn=answer_question,
|
| 163 |
inputs=[
|
| 164 |
gr.Textbox(label="Ask a question"),
|
| 165 |
-
gr.File(label="Upload
|
| 166 |
],
|
| 167 |
outputs=gr.Textbox(label="Answer"),
|
| 168 |
-
title="
|
| 169 |
-
description="Upload
|
| 170 |
)
|
| 171 |
|
|
|
|
|
|
|
|
|
|
| 172 |
# Mount Gradio app in FastAPI
|
| 173 |
-
|
| 174 |
-
def redirect_root():
|
| 175 |
-
return {"message": "Visit /gradio for the interface."}
|
| 176 |
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
return templates.TemplateResponse("index.html", {"request": request})
|
| 102 |
"""
|
| 103 |
from fastapi import FastAPI
|
| 104 |
+
from fastapi.responses import RedirectResponse
|
| 105 |
import gradio as gr
|
| 106 |
from transformers import pipeline
|
| 107 |
import pdfplumber, docx
|
| 108 |
from pptx import Presentation
|
| 109 |
from PIL import Image
|
| 110 |
import pytesseract
|
|
|
|
| 111 |
import easyocr
|
| 112 |
import os
|
| 113 |
|
|
|
|
| 119 |
image_qa_pipeline = pipeline("vqa", model="Salesforce/blip-vqa-base")
|
| 120 |
reader = easyocr.Reader(['en'])
|
| 121 |
|
| 122 |
+
# File parsing functions
|
| 123 |
def extract_text_from_pdf(file):
|
| 124 |
with pdfplumber.open(file) as pdf:
|
| 125 |
return "\n".join(page.extract_text() for page in pdf.pages if page.extract_text())
|
|
|
|
| 136 |
image = Image.open(file)
|
| 137 |
return pytesseract.image_to_string(image)
|
| 138 |
|
| 139 |
+
# Main QA logic for documents and images
|
| 140 |
def answer_question(question, file):
|
| 141 |
file_ext = os.path.splitext(file.name)[-1].lower()
|
| 142 |
+
|
| 143 |
if file_ext == ".pdf":
|
| 144 |
context = extract_text_from_pdf(file)
|
| 145 |
elif file_ext == ".docx":
|
|
|
|
| 157 |
result = qa_pipeline(question=question, context=context)
|
| 158 |
return result["answer"]
|
| 159 |
|
| 160 |
+
# Create Gradio interfaces for both document and image QA
|
| 161 |
+
doc_interface = gr.Interface(
|
| 162 |
+
fn=answer_question,
|
| 163 |
+
inputs=[
|
| 164 |
+
gr.Textbox(label="Ask a question"),
|
| 165 |
+
gr.File(label="Upload a document (PDF, DOCX, PPTX)")
|
| 166 |
+
],
|
| 167 |
+
outputs=gr.Textbox(label="Answer"),
|
| 168 |
+
title="Document Question Answering",
|
| 169 |
+
description="Upload a document and ask a question. Get answers from the document content.",
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
img_interface = gr.Interface(
|
| 173 |
fn=answer_question,
|
| 174 |
inputs=[
|
| 175 |
gr.Textbox(label="Ask a question"),
|
| 176 |
+
gr.File(label="Upload an image (PNG, JPG, etc.)")
|
| 177 |
],
|
| 178 |
outputs=gr.Textbox(label="Answer"),
|
| 179 |
+
title="Image Question Answering",
|
| 180 |
+
description="Upload an image and ask a question. Get answers from the text extracted from the image.",
|
| 181 |
)
|
| 182 |
|
| 183 |
+
# Create a Tabbed Interface to switch between document and image QA
|
| 184 |
+
demo = gr.TabbedInterface([doc_interface, img_interface], ["Document QA", "Image QA"])
|
| 185 |
+
|
| 186 |
# Mount Gradio app in FastAPI
|
| 187 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
|
|
|
|
|
|
| 188 |
|
| 189 |
+
# Redirect to Gradio interface
|
| 190 |
+
@app.get("/")
|
| 191 |
+
def home():
|
| 192 |
+
return RedirectResponse(url="/")
|