Spaces:
Sleeping
Sleeping
File size: 5,342 Bytes
935d12d ffda1f9 a768964 ffda1f9 a768964 ffda1f9 a768964 ffda1f9 a768964 ffda1f9 a768964 ffda1f9 da9e0ce a768964 ffda1f9 a768964 ffda1f9 a768964 da9e0ce ffda1f9 a768964 ffda1f9 da9e0ce ffda1f9 a768964 ffda1f9 da9e0ce ffda1f9 a768964 ffda1f9 da9e0ce a768964 ffda1f9 da9e0ce ffda1f9 da9e0ce ffda1f9 a768964 ffda1f9 a768964 ffda1f9 da9e0ce a768964 da9e0ce a768964 ffda1f9 1e4a65e 935d12d 9325c19 df1ed5e 9325c19 4f113b7 935d12d 4f113b7 935d12d 4f113b7 935d12d 4f113b7 935d12d 4f113b7 9325c19 4f113b7 9325c19 4f113b7 9325c19 df1ed5e 4f113b7 9325c19 4f113b7 df1ed5e 4f113b7 df1ed5e 7a6dca4 4f113b7 df1ed5e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
"""from fastapi import FastAPI, Form, File, UploadFile
from fastapi.responses import RedirectResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
from transformers import pipeline
import os
from PIL import Image
import io
import pdfplumber
import docx
import openpyxl
import pytesseract
from io import BytesIO
import fitz # PyMuPDF
import easyocr
from fastapi.templating import Jinja2Templates
from starlette.requests import Request
# Initialize the app
app = FastAPI()
# Mount the static directory to serve HTML, CSS, JS files
app.mount("/static", StaticFiles(directory="static"), name="static")
# Initialize transformers pipelines
qa_pipeline = pipeline("question-answering", model="microsoft/phi-2", tokenizer="microsoft/phi-2")
image_qa_pipeline = pipeline("vqa", model="Salesforce/blip-vqa-base")
# Initialize EasyOCR for image-based text extraction
reader = easyocr.Reader(['en'])
# Define a template for rendering HTML
templates = Jinja2Templates(directory="templates")
# Ensure temp_files directory exists
temp_dir = "temp_files"
os.makedirs(temp_dir, exist_ok=True)
# Function to process PDFs
def extract_pdf_text(file_path: str):
with pdfplumber.open(file_path) as pdf:
text = ""
for page in pdf.pages:
text += page.extract_text()
return text
# Function to process DOCX files
def extract_docx_text(file_path: str):
doc = docx.Document(file_path)
text = "\n".join([para.text for para in doc.paragraphs])
return text
# Function to process PPTX files
def extract_pptx_text(file_path: str):
from pptx import Presentation
prs = Presentation(file_path)
text = "\n".join([shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text")])
return text
# Function to extract text from images using OCR
def extract_text_from_image(image: Image):
return pytesseract.image_to_string(image)
# Home route
@app.get("/")
def home():
return RedirectResponse(url="/docs")
# Function to answer questions based on document content
@app.post("/question-answering-doc")
async def question_answering_doc(question: str = Form(...), file: UploadFile = File(...)):
file_path = os.path.join(temp_dir, file.filename)
with open(file_path, "wb") as f:
f.write(await file.read())
if file.filename.endswith(".pdf"):
text = extract_pdf_text(file_path)
elif file.filename.endswith(".docx"):
text = extract_docx_text(file_path)
elif file.filename.endswith(".pptx"):
text = extract_pptx_text(file_path)
else:
return {"error": "Unsupported file format"}
qa_result = qa_pipeline(question=question, context=text)
return {"answer": qa_result['answer']}
# Function to answer questions based on images
@app.post("/question-answering-image")
async def question_answering_image(question: str = Form(...), image_file: UploadFile = File(...)):
image = Image.open(BytesIO(await image_file.read()))
image_text = extract_text_from_image(image)
image_qa_result = image_qa_pipeline({"image": image, "question": question})
return {"answer": image_qa_result[0]['answer'], "image_text": image_text}
# Serve the application in Hugging Face space
@app.get("/docs")
async def get_docs(request: Request):
return templates.TemplateResponse("index.html", {"request": request})
"""
from fastapi import FastAPI
from fastapi.responses import RedirectResponse
import gradio as gr
from transformers import VilBertForQuestionAnswering, ViltProcessor
from PIL import Image
import torch
# Initialize FastAPI
app = FastAPI()
# Load VilBERT model and processor
model = VilBertForQuestionAnswering.from_pretrained("facebook/vilbert-vqa")
processor = ViltProcessor.from_pretrained("facebook/vilbert-vqa")
# Function to handle image question answering
def answer_question_from_image(image, question):
if image is None or question.strip() == "":
return "Please upload an image and enter a question."
# Process input
inputs = processor(images=image, text=question, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
predicted_idx = outputs.logits.argmax(-1).item()
# For VilBERT VQA, class index maps to predefined answers (like "yes", "no", etc.)
# You'd need the VQA label mapping to decode this properly
# For now, just return the index
return f"Predicted answer ID: {predicted_idx}"
# Create Image QA interface
img_interface = gr.Interface(
fn=answer_question_from_image,
inputs=[gr.Image(label="Upload Image"), gr.Textbox(label="Ask a Question")],
outputs="text",
title="AI Image Question Answering"
)
# Dummy doc QA interface (replace with your own implementation)
def dummy_doc_qa(doc, question):
return "This is a placeholder for Document QA."
doc_interface = gr.Interface(
fn=dummy_doc_qa,
inputs=[gr.File(label="Upload Document"), gr.Textbox(label="Ask a Question")],
outputs="text",
title="Document Question Answering"
)
# Combine into a tabbed interface
demo = gr.TabbedInterface([doc_interface, img_interface], ["Document QA", "Image QA"])
# Mount Gradio inside FastAPI at root "/"
app = gr.mount_gradio_app(app, demo, path="/")
# Redirect root URL to Gradio UI
@app.get("/")
def home():
return RedirectResponse(url="/")
|