Spaces:
Sleeping
Sleeping
File size: 4,686 Bytes
7e5ddc3 2852c90 2be14bd dbe3ba4 28de64c a5ffabc 0c9548a 8e24199 b1622cb 7e5ddc3 2be14bd 9a2af53 239c804 875917f 0878e54 28de64c 8e24199 28de64c d2931fe 8e24199 d2931fe 8e24199 c724805 d2931fe 2be14bd 28de64c 8e24199 28de64c 2852c90 d2931fe 8e24199 d2931fe 2be14bd 28de64c 8e24199 d2931fe 28de64c d2931fe 8e24199 d2931fe 2be14bd 28de64c 8e24199 28de64c 8e24199 d2931fe 8e24199 d2931fe 8e24199 28de64c d2931fe 8e24199 2be14bd 28de64c 2be14bd a5ffabc 2852c90 2be14bd a5ffabc 2be14bd d2931fe 8e24199 2be14bd d2931fe 7e5ddc3 d2931fe 0878e54 7e5ddc3 2852c90 2be14bd 28de64c 6bf4ee9 28de64c 6bf4ee9 a5ffabc d2931fe a5ffabc d2931fe a5ffabc 7e5ddc3 28de64c 7e5ddc3 28de64c 7e5ddc3 28de64c 2be14bd a5ffabc 0878e54 28de64c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
from fastapi import FastAPI, File, UploadFile
import fitz # PyMuPDF for PDF parsing
from tika import parser # Apache Tika for document parsing
import openpyxl
from pptx import Presentation
from PIL import Image
from transformers import pipeline
import gradio as gr
from fastapi.responses import RedirectResponse
import numpy as np
import easyocr
# Initialize FastAPI
app = FastAPI()
print(f"π Loading models")
doc_qa_pipeline = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0")
image_captioning_pipeline = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
print("Models loaded")
# Initialize OCR Model (Lazy Load)
reader = easyocr.Reader(["en"], gpu=True)
# Allowed File Extensions
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}
def validate_file_type(file: UploadFile):
ext = file.filename.split(".")[-1].lower()
print(f"π Validating file type: {ext}")
if ext not in ALLOWED_EXTENSIONS:
return f"β Unsupported file format: {ext}"
return None
def truncate_text(text, max_tokens=450):
words = text.split()
truncated = " ".join(words[:max_tokens])
print(f"βοΈ Truncated text to {max_tokens} tokens.")
return truncated
def extract_text_from_pdf(pdf_file: UploadFile):
try:
print("π Extracting text from PDF...")
pdf_bytes = pdf_file.file.read()
doc = fitz.open(stream=pdf_bytes, filetype="pdf")
text = "\n".join([page.get_text("text") for page in doc])
return text if text else "β οΈ No text found."
except Exception as e:
return f"β Error reading PDF: {str(e)}"
def extract_text_with_tika(file: UploadFile):
try:
print("π Extracting text with Tika...")
parsed = parser.from_buffer(file.file.read())
return parsed.get("content", "β οΈ No text found.").strip()
except Exception as e:
return f"β Error reading document: {str(e)}"
def extract_text_from_excel(excel_file: UploadFile):
try:
print("π Extracting text from Excel...")
wb = openpyxl.load_workbook(excel_file.file, read_only=True)
text = []
for sheet in wb.worksheets:
for row in sheet.iter_rows(values_only=True):
text.append(" ".join(map(str, row)))
return "\n".join(text) if text else "β οΈ No text found."
except Exception as e:
return f"β Error reading Excel: {str(e)}"
def answer_question_from_document(file: UploadFile, question: str):
print("π Processing document for QA...")
validation_error = validate_file_type(file)
if validation_error:
return validation_error
file_ext = file.filename.split(".")[-1].lower()
if file_ext == "pdf":
text = extract_text_from_pdf(file)
elif file_ext in ["docx", "pptx"]:
text = extract_text_with_tika(file)
elif file_ext == "xlsx":
text = extract_text_from_excel(file)
else:
return "β Unsupported file format!"
if not text:
return "β οΈ No text extracted from the document."
truncated_text = truncate_text(text)
print("π€ Generating response...")
response = doc_qa_pipeline(f"Question: {question}\nContext: {truncated_text}")
return response[0]["generated_text"]
def answer_question_from_image(image, question: str):
try:
print("π¨ Converting image for processing...")
if isinstance(image, np.ndarray):
image = Image.fromarray(image) # Convert NumPy array to PIL Image
print("π¨ Generating caption for image...")
caption = image_captioning_pipeline(image)[0]['generated_text']
print("π€ Answering question based on caption...")
response = doc_qa_pipeline(f"Question: {question}\nContext: {caption}")
return response[0]["generated_text"]
except Exception as e:
return f"β Error processing image: {str(e)}"
doc_interface = gr.Interface(
fn=answer_question_from_document,
inputs=[gr.File(label="π Upload Document"), gr.Textbox(label="π¬ Ask a Question")],
outputs="text",
title="π AI Document Question Answering"
)
img_interface = gr.Interface(
fn=answer_question_from_image,
inputs=[gr.Image(label="π¨ Upload Image"), gr.Textbox(label="π¬ Ask a Question")],
outputs="text",
title="π¨ AI Image Question Answering"
)
demo = gr.TabbedInterface([doc_interface, img_interface], ["π Document QA", "π¨ Image QA"])
@app.get("/")
def home():
return RedirectResponse(url="/")
if __name__ == "__main__":
demo.launch()
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)
|