File size: 4,686 Bytes
7e5ddc3
2852c90
 
2be14bd
 
dbe3ba4
28de64c
a5ffabc
 
0c9548a
8e24199
b1622cb
7e5ddc3
2be14bd
 
9a2af53
239c804
875917f
0878e54
28de64c
 
8e24199
 
 
 
 
 
28de64c
 
d2931fe
8e24199
d2931fe
8e24199
 
c724805
 
d2931fe
 
 
2be14bd
28de64c
8e24199
28de64c
 
 
2852c90
d2931fe
8e24199
d2931fe
2be14bd
28de64c
8e24199
d2931fe
28de64c
d2931fe
8e24199
d2931fe
2be14bd
28de64c
8e24199
28de64c
 
8e24199
 
 
 
d2931fe
8e24199
d2931fe
8e24199
28de64c
d2931fe
8e24199
 
 
2be14bd
28de64c
 
2be14bd
a5ffabc
2852c90
 
2be14bd
a5ffabc
2be14bd
d2931fe
8e24199
2be14bd
d2931fe
7e5ddc3
 
d2931fe
0878e54
7e5ddc3
2852c90
2be14bd
28de64c
6bf4ee9
28de64c
 
 
 
 
6bf4ee9
 
 
 
 
 
 
 
 
a5ffabc
 
d2931fe
a5ffabc
d2931fe
a5ffabc
 
7e5ddc3
 
28de64c
7e5ddc3
28de64c
7e5ddc3
 
28de64c
2be14bd
a5ffabc
 
0878e54
28de64c
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from fastapi import FastAPI, File, UploadFile
import fitz  # PyMuPDF for PDF parsing
from tika import parser  # Apache Tika for document parsing
import openpyxl
from pptx import Presentation
from PIL import Image
from transformers import pipeline
import gradio as gr
from fastapi.responses import RedirectResponse
import numpy as np
import easyocr

# Initialize FastAPI
app = FastAPI()

print(f"πŸ”„ Loading models")

doc_qa_pipeline = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0")
image_captioning_pipeline = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
print("Models loaded")

# Initialize OCR Model (Lazy Load)
reader = easyocr.Reader(["en"], gpu=True)

# Allowed File Extensions
ALLOWED_EXTENSIONS = {"pdf", "docx", "pptx", "xlsx"}

def validate_file_type(file: UploadFile):
    ext = file.filename.split(".")[-1].lower()
    print(f"πŸ” Validating file type: {ext}")
    if ext not in ALLOWED_EXTENSIONS:
        return f"❌ Unsupported file format: {ext}"
    return None

def truncate_text(text, max_tokens=450):
    words = text.split()
    truncated = " ".join(words[:max_tokens])
    print(f"βœ‚οΈ Truncated text to {max_tokens} tokens.")
    return truncated

def extract_text_from_pdf(pdf_file: UploadFile):
    try:
        print("πŸ“ Extracting text from PDF...")
        pdf_bytes = pdf_file.file.read()
        doc = fitz.open(stream=pdf_bytes, filetype="pdf")
        text = "\n".join([page.get_text("text") for page in doc])
        return text if text else "⚠️ No text found."
    except Exception as e:
        return f"❌ Error reading PDF: {str(e)}"

def extract_text_with_tika(file: UploadFile):
    try:
        print("πŸ“ Extracting text with Tika...")
        parsed = parser.from_buffer(file.file.read())
        return parsed.get("content", "⚠️ No text found.").strip()
    except Exception as e:
        return f"❌ Error reading document: {str(e)}"

def extract_text_from_excel(excel_file: UploadFile):
    try:
        print("πŸ“ Extracting text from Excel...")
        wb = openpyxl.load_workbook(excel_file.file, read_only=True)
        text = []
        for sheet in wb.worksheets:
            for row in sheet.iter_rows(values_only=True):
                text.append(" ".join(map(str, row)))
        return "\n".join(text) if text else "⚠️ No text found."
    except Exception as e:
        return f"❌ Error reading Excel: {str(e)}"

def answer_question_from_document(file: UploadFile, question: str):
    print("πŸ“‚ Processing document for QA...")
    validation_error = validate_file_type(file)
    if validation_error:
        return validation_error
    
    file_ext = file.filename.split(".")[-1].lower()
    
    if file_ext == "pdf":
        text = extract_text_from_pdf(file)
    elif file_ext in ["docx", "pptx"]:
        text = extract_text_with_tika(file)
    elif file_ext == "xlsx":
        text = extract_text_from_excel(file)
    else:
        return "❌ Unsupported file format!"
    
    if not text:
        return "⚠️ No text extracted from the document."
    
    truncated_text = truncate_text(text)
    print("πŸ€– Generating response...")
    response = doc_qa_pipeline(f"Question: {question}\nContext: {truncated_text}")
    
    return response[0]["generated_text"]

def answer_question_from_image(image, question: str):
    try:
        print("🎨 Converting image for processing...")
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image)  # Convert NumPy array to PIL Image
        
        print("🎨 Generating caption for image...")
        caption = image_captioning_pipeline(image)[0]['generated_text']

        print("πŸ€– Answering question based on caption...")
        response = doc_qa_pipeline(f"Question: {question}\nContext: {caption}")

        return response[0]["generated_text"]
    except Exception as e:
        return f"❌ Error processing image: {str(e)}"

doc_interface = gr.Interface(
    fn=answer_question_from_document,
    inputs=[gr.File(label="πŸ“‚ Upload Document"), gr.Textbox(label="πŸ’¬ Ask a Question")],
    outputs="text",
    title="πŸ“„ AI Document Question Answering"
)

img_interface = gr.Interface(
    fn=answer_question_from_image,
    inputs=[gr.Image(label="🎨 Upload Image"), gr.Textbox(label="πŸ’¬ Ask a Question")],
    outputs="text",
    title="🎨 AI Image Question Answering"
)

demo = gr.TabbedInterface([doc_interface, img_interface], ["πŸ“„ Document QA", "🎨 Image QA"])

@app.get("/")
def home():
    return RedirectResponse(url="/")

if __name__ == "__main__":
    demo.launch()
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)