Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,10 +1,12 @@
|
|
| 1 |
-
|
| 2 |
from fastapi import FastAPI, File, UploadFile
|
| 3 |
import pdfplumber
|
| 4 |
import docx
|
| 5 |
import openpyxl
|
| 6 |
from pptx import Presentation
|
| 7 |
-
import
|
|
|
|
|
|
|
|
|
|
| 8 |
from transformers import pipeline
|
| 9 |
import gradio as gr
|
| 10 |
from fastapi.responses import RedirectResponse
|
|
@@ -15,6 +17,15 @@ app = FastAPI()
|
|
| 15 |
# Load AI Model for Question Answering
|
| 16 |
qa_pipeline = pipeline("text2text-generation", model="google/flan-t5-large", tokenizer="google/flan-t5-large", use_fast=True)
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
# Function to truncate text to 450 tokens
|
| 19 |
def truncate_text(text, max_tokens=450):
|
| 20 |
words = text.split()
|
|
@@ -49,10 +60,20 @@ def extract_text_from_excel(excel_file):
|
|
| 49 |
text.append(" ".join(map(str, row)))
|
| 50 |
return "\n".join(text)
|
| 51 |
|
|
|
|
| 52 |
def extract_text_from_image(image_file):
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
# Function to answer questions based on document content
|
| 58 |
def answer_question_from_document(file, question):
|
|
@@ -82,7 +103,7 @@ def answer_question_from_document(file, question):
|
|
| 82 |
def answer_question_from_image(image, question):
|
| 83 |
image_text = extract_text_from_image(image)
|
| 84 |
if not image_text:
|
| 85 |
-
return "No
|
| 86 |
|
| 87 |
truncated_text = truncate_text(image_text)
|
| 88 |
input_text = f"Question: {question} Context: {truncated_text}"
|
|
|
|
|
|
|
| 1 |
from fastapi import FastAPI, File, UploadFile
|
| 2 |
import pdfplumber
|
| 3 |
import docx
|
| 4 |
import openpyxl
|
| 5 |
from pptx import Presentation
|
| 6 |
+
import torch
|
| 7 |
+
from torchvision import transforms
|
| 8 |
+
from torchvision.models.detection import fasterrcnn_resnet50_fpn
|
| 9 |
+
from PIL import Image
|
| 10 |
from transformers import pipeline
|
| 11 |
import gradio as gr
|
| 12 |
from fastapi.responses import RedirectResponse
|
|
|
|
| 17 |
# Load AI Model for Question Answering
|
| 18 |
qa_pipeline = pipeline("text2text-generation", model="google/flan-t5-large", tokenizer="google/flan-t5-large", use_fast=True)
|
| 19 |
|
| 20 |
+
# Load Pretrained Object Detection Model (Torchvision)
|
| 21 |
+
model = fasterrcnn_resnet50_fpn(pretrained=True)
|
| 22 |
+
model.eval()
|
| 23 |
+
|
| 24 |
+
# Image Transformations
|
| 25 |
+
transform = transforms.Compose([
|
| 26 |
+
transforms.ToTensor()
|
| 27 |
+
])
|
| 28 |
+
|
| 29 |
# Function to truncate text to 450 tokens
|
| 30 |
def truncate_text(text, max_tokens=450):
|
| 31 |
words = text.split()
|
|
|
|
| 60 |
text.append(" ".join(map(str, row)))
|
| 61 |
return "\n".join(text)
|
| 62 |
|
| 63 |
+
# Function to perform object detection using Torchvision
|
| 64 |
def extract_text_from_image(image_file):
|
| 65 |
+
image = Image.open(image_file).convert("RGB")
|
| 66 |
+
image_tensor = transform(image).unsqueeze(0)
|
| 67 |
+
|
| 68 |
+
with torch.no_grad():
|
| 69 |
+
predictions = model(image_tensor)
|
| 70 |
+
|
| 71 |
+
detected_objects = []
|
| 72 |
+
for label, score in zip(predictions[0]['labels'], predictions[0]['scores']):
|
| 73 |
+
if score > 0.7:
|
| 74 |
+
detected_objects.append(f"Object {label.item()} detected with confidence {score.item():.2f}")
|
| 75 |
+
|
| 76 |
+
return "\n".join(detected_objects) if detected_objects else "No objects detected."
|
| 77 |
|
| 78 |
# Function to answer questions based on document content
|
| 79 |
def answer_question_from_document(file, question):
|
|
|
|
| 103 |
def answer_question_from_image(image, question):
|
| 104 |
image_text = extract_text_from_image(image)
|
| 105 |
if not image_text:
|
| 106 |
+
return "No meaningful content detected in the image."
|
| 107 |
|
| 108 |
truncated_text = truncate_text(image_text)
|
| 109 |
input_text = f"Question: {question} Context: {truncated_text}"
|