Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
-
from fastapi import FastAPI, File, UploadFile
|
| 2 |
-
from typing import List
|
| 3 |
import pdfplumber
|
| 4 |
import pytesseract
|
| 5 |
from PIL import Image
|
|
@@ -8,14 +7,23 @@ import docx
|
|
| 8 |
import openpyxl
|
| 9 |
from pptx import Presentation
|
| 10 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
import io
|
| 12 |
|
|
|
|
| 13 |
app = FastAPI()
|
| 14 |
|
| 15 |
-
# Load
|
| 16 |
qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
| 17 |
-
vqa_pipeline = pipeline("image-to-text", model="Salesforce/blip-vqa-base")
|
|
|
|
|
|
|
| 18 |
|
|
|
|
| 19 |
def extract_text_from_pdf(pdf_file):
|
| 20 |
text = ""
|
| 21 |
with pdfplumber.open(pdf_file) as pdf:
|
|
@@ -49,35 +57,106 @@ def extract_text_from_image(image_file):
|
|
| 49 |
result = reader.readtext(image_file)
|
| 50 |
return " ".join([res[1] for res in result])
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
file_ext = file.filename.split(".")[-1].lower()
|
| 55 |
|
| 56 |
if file_ext == "pdf":
|
| 57 |
-
text = extract_text_from_pdf(
|
| 58 |
elif file_ext == "docx":
|
| 59 |
-
text = extract_text_from_docx(
|
| 60 |
elif file_ext == "pptx":
|
| 61 |
-
text = extract_text_from_pptx(
|
| 62 |
elif file_ext == "xlsx":
|
| 63 |
-
text = extract_text_from_excel(
|
| 64 |
else:
|
| 65 |
-
return
|
| 66 |
|
| 67 |
if not text:
|
| 68 |
-
return
|
| 69 |
|
| 70 |
response = qa_pipeline(question=question, context=text)
|
| 71 |
-
return
|
| 72 |
|
| 73 |
-
|
| 74 |
-
async def qa_image(file: UploadFile = File(...), question: str = Form(...)):
|
| 75 |
-
image = Image.open(io.BytesIO(await file.read()))
|
| 76 |
image_text = extract_text_from_image(image)
|
| 77 |
-
|
| 78 |
if not image_text:
|
| 79 |
-
return
|
| 80 |
|
| 81 |
response = qa_pipeline(question=question, context=image_text)
|
| 82 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, File, UploadFile
|
|
|
|
| 2 |
import pdfplumber
|
| 3 |
import pytesseract
|
| 4 |
from PIL import Image
|
|
|
|
| 7 |
import openpyxl
|
| 8 |
from pptx import Presentation
|
| 9 |
from transformers import pipeline
|
| 10 |
+
import gradio as gr
|
| 11 |
+
import pandas as pd
|
| 12 |
+
import matplotlib.pyplot as plt
|
| 13 |
+
import seaborn as sns
|
| 14 |
+
from fastapi.responses import RedirectResponse
|
| 15 |
import io
|
| 16 |
|
| 17 |
+
# β
Initialize FastAPI
|
| 18 |
app = FastAPI()
|
| 19 |
|
| 20 |
+
# β
Load AI Models
|
| 21 |
qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
|
| 22 |
+
vqa_pipeline = pipeline("image-to-text", model="Salesforce/blip-vqa-base")
|
| 23 |
+
code_generator = pipeline("text-generation", model="openai-community/gpt2-medium")
|
| 24 |
+
table_analyzer = pipeline("table-question-answering", model="google/tapas-large-finetuned-wtq")
|
| 25 |
|
| 26 |
+
# β
Functions for Document & Image QA
|
| 27 |
def extract_text_from_pdf(pdf_file):
|
| 28 |
text = ""
|
| 29 |
with pdfplumber.open(pdf_file) as pdf:
|
|
|
|
| 57 |
result = reader.readtext(image_file)
|
| 58 |
return " ".join([res[1] for res in result])
|
| 59 |
|
| 60 |
+
def answer_question_from_document(file, question):
|
| 61 |
+
file_ext = file.name.split(".")[-1].lower()
|
|
|
|
| 62 |
|
| 63 |
if file_ext == "pdf":
|
| 64 |
+
text = extract_text_from_pdf(file)
|
| 65 |
elif file_ext == "docx":
|
| 66 |
+
text = extract_text_from_docx(file)
|
| 67 |
elif file_ext == "pptx":
|
| 68 |
+
text = extract_text_from_pptx(file)
|
| 69 |
elif file_ext == "xlsx":
|
| 70 |
+
text = extract_text_from_excel(file)
|
| 71 |
else:
|
| 72 |
+
return "Unsupported file format!"
|
| 73 |
|
| 74 |
if not text:
|
| 75 |
+
return "No text extracted from the document."
|
| 76 |
|
| 77 |
response = qa_pipeline(question=question, context=text)
|
| 78 |
+
return response["answer"]
|
| 79 |
|
| 80 |
+
def answer_question_from_image(image, question):
|
|
|
|
|
|
|
| 81 |
image_text = extract_text_from_image(image)
|
|
|
|
| 82 |
if not image_text:
|
| 83 |
+
return "No text detected in the image."
|
| 84 |
|
| 85 |
response = qa_pipeline(question=question, context=image_text)
|
| 86 |
+
return response["answer"]
|
| 87 |
+
|
| 88 |
+
# β
Gradio UI for Document & Image QA
|
| 89 |
+
doc_interface = gr.Interface(
|
| 90 |
+
fn=answer_question_from_document,
|
| 91 |
+
inputs=[gr.File(label="Upload Document"), gr.Textbox(label="Ask a Question")],
|
| 92 |
+
outputs="text",
|
| 93 |
+
title="AI Document Question Answering"
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
img_interface = gr.Interface(
|
| 97 |
+
fn=answer_question_from_image,
|
| 98 |
+
inputs=[gr.Image(label="Upload Image"), gr.Textbox(label="Ask a Question")],
|
| 99 |
+
outputs="text",
|
| 100 |
+
title="AI Image Question Answering"
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
# β
Data Visualization Function
|
| 104 |
+
def generate_visualization(excel_file, viz_type, user_request):
|
| 105 |
+
try:
|
| 106 |
+
df = pd.read_excel(excel_file)
|
| 107 |
+
df = df.astype(str).fillna("")
|
| 108 |
+
|
| 109 |
+
table_input = {
|
| 110 |
+
"table": df.to_dict(orient="records"),
|
| 111 |
+
"query": user_request.strip() if isinstance(user_request, str) else "What is the summary?"
|
| 112 |
+
}
|
| 113 |
+
|
| 114 |
+
table_answer = table_analyzer(**table_input)
|
| 115 |
+
|
| 116 |
+
prompt = (
|
| 117 |
+
f"Given a dataset with columns {list(df.columns)}, generate Python code using Matplotlib and Seaborn "
|
| 118 |
+
f"to create a {viz_type.lower()} based on: {user_request}. Only return valid Python code, no explanations."
|
| 119 |
+
)
|
| 120 |
+
code_response = code_generator(prompt, max_new_tokens=150, do_sample=True)
|
| 121 |
+
|
| 122 |
+
if isinstance(code_response, list) and "generated_text" in code_response[0]:
|
| 123 |
+
generated_code = code_response[0]["generated_text"]
|
| 124 |
+
else:
|
| 125 |
+
generated_code = "Error: Model did not return valid code."
|
| 126 |
+
|
| 127 |
+
try:
|
| 128 |
+
exec_globals = {"plt": plt, "sns": sns, "pd": pd, "df": df, "io": io}
|
| 129 |
+
exec(generated_code, exec_globals)
|
| 130 |
+
|
| 131 |
+
fig = plt.gcf()
|
| 132 |
+
img_buf = io.BytesIO()
|
| 133 |
+
fig.savefig(img_buf, format='png')
|
| 134 |
+
img_buf.seek(0)
|
| 135 |
+
plt.close(fig)
|
| 136 |
+
except Exception as e:
|
| 137 |
+
return generated_code, f"Error in executing visualization: {str(e)}"
|
| 138 |
+
|
| 139 |
+
return generated_code, img_buf
|
| 140 |
+
|
| 141 |
+
except Exception as e:
|
| 142 |
+
return f"Error: {str(e)}", "Failed to analyze table."
|
| 143 |
+
|
| 144 |
+
# β
Gradio UI for Data Visualization
|
| 145 |
+
viz_interface = gr.Interface(
|
| 146 |
+
fn=generate_visualization,
|
| 147 |
+
inputs=[
|
| 148 |
+
gr.File(label="Upload Excel File"),
|
| 149 |
+
gr.Radio(["Bar Chart", "Line Chart", "Scatter Plot", "Histogram"], label="Choose Visualization Type"),
|
| 150 |
+
gr.Textbox(label="Enter Visualization Request")
|
| 151 |
+
],
|
| 152 |
+
outputs=[gr.Code(label="Generated Python Code"), gr.Image(label="Visualization Output")],
|
| 153 |
+
title="AI-Powered Data Visualization"
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
# β
Mount Gradio Interfaces
|
| 157 |
+
demo = gr.TabbedInterface([doc_interface, img_interface, viz_interface], ["Document QA", "Image QA", "Data Visualization"])
|
| 158 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
| 159 |
|
| 160 |
+
@app.get("/")
|
| 161 |
+
def home():
|
| 162 |
+
return RedirectResponse(url="/")
|