File size: 25,253 Bytes
472d535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29549c3
472d535
 
29549c3
 
472d535
29549c3
 
472d535
 
 
29549c3
 
6312ef8
472d535
 
 
 
 
 
 
 
 
 
 
 
 
 
29549c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6312ef8
29549c3
 
 
 
6312ef8
 
 
 
 
 
 
29549c3
 
 
 
 
472d535
29549c3
472d535
29549c3
472d535
 
 
29549c3
472d535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59d5bb3
f83c2b9
 
6312ef8
 
472d535
 
 
 
 
f83c2b9
472d535
 
 
 
 
 
 
 
 
 
6312ef8
f83c2b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6312ef8
f83c2b9
6312ef8
 
 
 
f83c2b9
 
6312ef8
f83c2b9
6312ef8
f83c2b9
 
 
 
 
 
 
 
 
 
 
 
 
6312ef8
 
 
 
 
f83c2b9
6312ef8
 
 
 
 
f83c2b9
6312ef8
 
f83c2b9
 
 
 
6312ef8
f83c2b9
6312ef8
f83c2b9
472d535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59d5bb3
472d535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f83c2b9
 
472d535
f83c2b9
472d535
f83c2b9
472d535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f83c2b9
472d535
f83c2b9
 
472d535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6312ef8
472d535
6312ef8
 
 
 
 
472d535
6312ef8
472d535
 
 
 
 
 
 
dc7b821
472d535
 
 
29549c3
 
 
472d535
 
 
 
29549c3
 
472d535
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
import gradio as gr
import replicate
import os
from PIL import Image
import requests
from io import BytesIO
import time
import tempfile
import base64
import spaces
import torch
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
from diffusers.utils.export_utils import export_to_video
import numpy as np
import random
import gc

# ===========================
# Configuration
# ===========================

# Set up Replicate API key
os.environ['REPLICATE_API_TOKEN'] = os.getenv('REPLICATE_API_TOKEN')

# Video Model Configuration
VIDEO_MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
LANDSCAPE_WIDTH = 832
LANDSCAPE_HEIGHT = 480
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 16
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81
MIN_DURATION = round(MIN_FRAMES_MODEL/FIXED_FPS, 1)
MAX_DURATION = round(MAX_FRAMES_MODEL/FIXED_FPS, 1)

default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "static, still, no motion, frozen"

# ===========================
# Initialize Video Pipeline
# ===========================

# Initialize once on startup
video_pipe = None
video_pipeline_ready = False

def initialize_video_pipeline():
    global video_pipe, video_pipeline_ready
    if video_pipe is None and not video_pipeline_ready:
        try:
            print("Starting video pipeline initialization...")
            
            # Install PyTorch 2.8 (if needed)
            os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
            
            # Import LoRA loading utilities
            from peft import LoraConfig, get_peft_model, TaskType
            
            video_pipe = WanImageToVideoPipeline.from_pretrained(VIDEO_MODEL_ID,
                transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
                    subfolder='transformer',
                    torch_dtype=torch.bfloat16,
                    device_map='cuda',
                ),
                transformer_2=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
                    subfolder='transformer_2',
                    torch_dtype=torch.bfloat16,
                    device_map='cuda',
                ),
                torch_dtype=torch.bfloat16,
            ).to('cuda')
            
            # Clear memory after loading
            gc.collect()
            torch.cuda.empty_cache()
            
            # Load Lightning LoRA
            try:
                print("Loading Lightning LoRA adapter...")
                video_pipe.transformer.load_adapter("Lightx2v/lightx2v_I2V_14B_480p_cfg_step_4", adapter_name="lightx2v")
                video_pipe.transformer_2.load_adapter("Lightx2v/lightx2v_I2V_14B_480p_cfg_step_4", adapter_name="lightx2v_2")
                video_pipe.transformer.set_adapters(["lightx2v"], adapter_weights=[1.0])
                video_pipe.transformer_2.set_adapters(["lightx2v_2"], adapter_weights=[1.0])
                print("Lightning LoRA loaded successfully")
            except Exception as e:
                print(f"Warning: Could not load Lightning LoRA: {e}")
                # Continue without LoRA
            
            # Clear memory again
            gc.collect()
            torch.cuda.empty_cache()
            
            # Try to optimize if module available
            try:
                from optimization import optimize_pipeline_
                print("Optimizing pipeline...")
                optimize_pipeline_(video_pipe,
                    image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)),
                    prompt='prompt',
                    height=LANDSCAPE_HEIGHT,
                    width=LANDSCAPE_WIDTH,
                    num_frames=MAX_FRAMES_MODEL,
                )
                print("Pipeline optimization complete")
            except ImportError:
                print("Optimization module not found, running without optimization")
            except Exception as e:
                print(f"Warning: Optimization failed: {e}")
                
            video_pipeline_ready = True
            print("Video pipeline initialized successfully!")
            
        except Exception as e:
            print(f"Error initializing video pipeline: {e}")
            video_pipe = None
            video_pipeline_ready = False

# ===========================
# Image Processing Functions
# ===========================

def upload_image_to_hosting(image):
    """Upload image to multiple hosting services with fallback"""
    # Method 1: Try imgbb.com
    try:
        buffered = BytesIO()
        image.save(buffered, format="PNG")
        buffered.seek(0)
        img_base64 = base64.b64encode(buffered.getvalue()).decode()
        
        response = requests.post(
            "https://api.imgbb.com/1/upload",
            data={
                'key': '6d207e02198a847aa98d0a2a901485a5',
                'image': img_base64,
            }
        )
        
        if response.status_code == 200:
            data = response.json()
            if data.get('success'):
                return data['data']['url']
    except:
        pass
    
    # Method 2: Try 0x0.st
    try:
        buffered = BytesIO()
        image.save(buffered, format="PNG")
        buffered.seek(0)
        
        files = {'file': ('image.png', buffered, 'image/png')}
        response = requests.post("https://0x0.st", files=files)
        
        if response.status_code == 200:
            return response.text.strip()
    except:
        pass
    
    # Method 3: Fallback to base64
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    buffered.seek(0)
    img_base64 = base64.b64encode(buffered.getvalue()).decode()
    return f"data:image/png;base64,{img_base64}"

def process_images(prompt, image1, image2=None):
    """Process uploaded images with Replicate API"""
    if not image1:
        return None, "Please upload at least one image", None
    
    if not os.getenv('REPLICATE_API_TOKEN'):
        return None, "Please set REPLICATE_API_TOKEN", None
    
    try:
        image_urls = []
        
        # Upload images
        url1 = upload_image_to_hosting(image1)
        image_urls.append(url1)
        
        if image2:
            url2 = upload_image_to_hosting(image2)
            image_urls.append(url2)
        
        # Run the model
        output = replicate.run(
            "google/nano-banana",
            input={
                "prompt": prompt,
                "image_input": image_urls
            }
        )
        
        if output is None:
            return None, "No output received", None
        
        # Get the generated image
        img = None
        
        try:
            if hasattr(output, 'read'):
                img_data = output.read()
                img = Image.open(BytesIO(img_data))
        except:
            pass
        
        if img is None:
            try:
                if hasattr(output, 'url'):
                    output_url = output.url()
                    response = requests.get(output_url, timeout=30)
                    if response.status_code == 200:
                        img = Image.open(BytesIO(response.content))
            except:
                pass
        
        if img is None:
            output_url = None
            if isinstance(output, str):
                output_url = output
            elif isinstance(output, list) and len(output) > 0:
                output_url = output[0]
            
            if output_url:
                response = requests.get(output_url, timeout=30)
                if response.status_code == 200:
                    img = Image.open(BytesIO(response.content))
        
        if img:
            return img, "✨ Image generated successfully! You can now generate a video from this image.", img
        else:
            return None, "Could not process output", None
        
    except Exception as e:
        return None, f"Error: {str(e)[:100]}", None

# ===========================
# Video Generation Functions
# ===========================

def resize_image_for_video(image: Image.Image) -> Image.Image:
    """Resize image for video generation"""
    if image.height > image.width:
        transposed = image.transpose(Image.Transpose.ROTATE_90)
        resized = resize_image_landscape(transposed)
        return resized.transpose(Image.Transpose.ROTATE_270)
    return resize_image_landscape(image)

def resize_image_landscape(image: Image.Image) -> Image.Image:
    """Resize landscape image to target dimensions"""
    target_aspect = LANDSCAPE_WIDTH / LANDSCAPE_HEIGHT
    width, height = image.size
    in_aspect = width / height
    
    if in_aspect > target_aspect:
        new_width = round(height * target_aspect)
        left = (width - new_width) // 2
        image = image.crop((left, 0, left + new_width, height))
    else:
        new_height = round(width / target_aspect)
        top = (height - new_height) // 2
        image = image.crop((0, top, width, top + new_height))
    
    return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS)

def get_duration(input_image, prompt, steps, negative_prompt, duration_seconds, guidance_scale, guidance_scale_2, seed, randomize_seed):
    # Shorter duration for stability
    return min(60, int(steps) * 10)

@spaces.GPU(duration=get_duration)
def generate_video(
    input_image,
    prompt,
    steps=4,
    negative_prompt=default_negative_prompt,
    duration_seconds=2.0,  # Reduced default
    guidance_scale=1,
    guidance_scale_2=1,
    seed=42,
    randomize_seed=False,
    progress=gr.Progress(track_tqdm=True),
):
    """Generate a video from an input image"""
    if input_image is None:
        raise gr.Error("Please generate or upload an image first.")
    
    try:
        # Initialize pipeline if needed (simplified)
        global video_pipe
        if video_pipe is None:
            print("Initializing video pipeline...")
            video_pipe = WanImageToVideoPipeline.from_pretrained(
                VIDEO_MODEL_ID,
                torch_dtype=torch.bfloat16,
                variant="fp16",
                use_safetensors=True
            ).to('cuda')
            
            # Load Lightning LoRA for faster generation
            try:
                video_pipe.load_lora_weights("Kijai/WanVideo_comfy", weight_name="Wan22-Lightning-4-cfg1_bf16_v0.9.safetensors")
                video_pipe.fuse_lora(lora_scale=1.0)
            except:
                pass
        
        # Clear cache before generation
        torch.cuda.empty_cache()
        gc.collect()
        
        # Ensure frames are divisible by 4 and limit to reasonable range
        num_frames = int(round(duration_seconds * FIXED_FPS))
        num_frames = np.clip(num_frames, 9, 33)  # Limit to 0.5-2 seconds
        num_frames = ((num_frames - 1) // 4) * 4 + 1
        
        current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
        
        # Resize image
        resized_image = resize_image_for_video(input_image)
        
        # Generate with reduced settings
        with torch.inference_mode():
            with torch.autocast('cuda', dtype=torch.bfloat16):
                output_frames_list = video_pipe(
                    image=resized_image,
                    prompt=prompt,
                    negative_prompt=negative_prompt,
                    height=resized_image.height,
                    width=resized_image.width,
                    num_frames=num_frames,
                    guidance_scale=float(guidance_scale),
                    guidance_scale_2=float(guidance_scale_2),
                    num_inference_steps=int(steps),
                    generator=torch.Generator(device="cuda").manual_seed(current_seed),
                ).frames[0]
        
        # Clear cache after generation
        torch.cuda.empty_cache()
        gc.collect()
        
        # Save video
        with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
            video_path = tmpfile.name
        
        export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
        
        return video_path, current_seed, f"🎬 Video generated successfully! ({num_frames} frames)"
        
    except RuntimeError as e:
        torch.cuda.empty_cache()
        gc.collect()
        if "out of memory" in str(e).lower():
            raise gr.Error("GPU memory exceeded. Try reducing duration to 1-2 seconds and steps to 4.")
        else:
            raise gr.Error(f"GPU error: {str(e)[:100]}")
    except Exception as e:
        raise gr.Error(f"Error: {str(e)[:200]}")

# ===========================
# Enhanced CSS
# ===========================

css = """
.gradio-container {
    background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
    font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif;
    min-height: 100vh;
}
.header-container {
    background: linear-gradient(135deg, #ffd93d 0%, #ffb347 100%);
    padding: 2.5rem;
    border-radius: 24px;
    margin-bottom: 2.5rem;
    box-shadow: 0 20px 60px rgba(255, 179, 71, 0.25);
}
.logo-text {
    font-size: 3.5rem;
    font-weight: 900;
    color: #2d3436;
    text-align: center;
    margin: 0;
    letter-spacing: -2px;
}
.subtitle {
    color: #2d3436;
    text-align: center;
    font-size: 1.2rem;
    margin-top: 0.5rem;
    opacity: 0.9;
    font-weight: 600;
}
.main-content {
    background: rgba(255, 255, 255, 0.95);
    backdrop-filter: blur(20px);
    border-radius: 24px;
    padding: 2.5rem;
    box-shadow: 0 10px 40px rgba(0, 0, 0, 0.08);
    margin-bottom: 2rem;
}
.gr-button-primary {
    background: linear-gradient(135deg, #ffd93d 0%, #ffb347 100%) !important;
    border: none !important;
    color: #2d3436 !important;
    font-weight: 700 !important;
    font-size: 1.1rem !important;
    padding: 1.2rem 2rem !important;
    border-radius: 14px !important;
    transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
    text-transform: uppercase;
    letter-spacing: 1px;
    width: 100%;
    margin-top: 1rem !important;
}
.gr-button-primary:hover {
    transform: translateY(-3px) !important;
    box-shadow: 0 15px 40px rgba(255, 179, 71, 0.35) !important;
}
.gr-button-secondary {
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
    border: none !important;
    color: white !important;
    font-weight: 700 !important;
    font-size: 1.1rem !important;
    padding: 1.2rem 2rem !important;
    border-radius: 14px !important;
    transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
    text-transform: uppercase;
    letter-spacing: 1px;
    width: 100%;
    margin-top: 1rem !important;
}
.gr-button-secondary:hover {
    transform: translateY(-3px) !important;
    box-shadow: 0 15px 40px rgba(102, 126, 234, 0.35) !important;
}
.section-title {
    font-size: 1.8rem;
    font-weight: 800;
    color: #2d3436;
    margin-bottom: 1rem;
    padding-bottom: 0.5rem;
    border-bottom: 3px solid #ffd93d;
}
.status-text {
    font-family: 'SF Mono', 'Monaco', monospace;
    color: #00b894;
    font-size: 0.9rem;
}
.image-container {
    border-radius: 14px !important;
    overflow: hidden;
    border: 2px solid #e1e8ed !important;
    background: #fafbfc !important;
}
footer {
    display: none !important;
}
"""

# ===========================
# Gradio Interface
# ===========================

with gr.Blocks(css=css, theme=gr.themes.Base()) as demo:
    # Shared state for passing image between tabs
    generated_image_state = gr.State(None)
    
    with gr.Column(elem_classes="header-container"):
        gr.HTML("""
            <h1 class="logo-text">🍌 Nano Banana + Video</h1>
            <p class="subtitle">AI-Powered Image Style Transfer with Video Generation</p>
            <div style="display: flex; justify-content: center; align-items: center; gap: 10px; margin-top: 20px;">
                <a href="https://huggingface.co/spaces/openfree/Nano-Banana-Upscale" target="_blank">
                    <img src="https://img.shields.io/static/v1?label=NANO%20BANANA&message=UPSCALE&color=%230000ff&labelColor=%23800080&logo=GOOGLE&logoColor=white&style=for-the-badge" alt="Nano Banana Upscale">
                </a>
                <a href="https://discord.gg/openfreeai" target="_blank">
                    <img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="Discord Openfree AI">
                </a>
            </div>
        """)
    
    with gr.Tabs():
        # Tab 1: Image Generation
        with gr.TabItem("🎨 Step 1: Generate Image"):
            with gr.Column(elem_classes="main-content"):
                gr.HTML('<h2 class="section-title">🎨 Image Style Transfer</h2>')
                
                with gr.Row(equal_height=True):
                    with gr.Column(scale=1):
                        style_prompt = gr.Textbox(
                            label="Style Description",
                            placeholder="Describe your style...",
                            lines=3,
                            value="Make the sheets in the style of the logo. Make the scene natural.",
                        )
                        
                        with gr.Row(equal_height=True):
                            image1 = gr.Image(
                                label="Primary Image",
                                type="pil",
                                height=200,
                                elem_classes="image-container"
                            )
                            image2 = gr.Image(
                                label="Secondary Image (Optional)",
                                type="pil",
                                height=200,
                                elem_classes="image-container"
                            )
                        
                        generate_img_btn = gr.Button(
                            "Generate Image ✨",
                            variant="primary",
                            size="lg"
                        )
                    
                    with gr.Column(scale=1):
                        output_image = gr.Image(
                            label="Generated Result",
                            type="pil",
                            height=420,
                            elem_classes="image-container"
                        )
                        
                        img_status = gr.Textbox(
                            label="Status",
                            interactive=False,
                            lines=1,
                            elem_classes="status-text",
                            value="Ready to generate image..."
                        )
                        
                        send_to_video_btn = gr.Button(
                            "Send to Video Generation →",
                            variant="secondary",
                            size="lg",
                            visible=False
                        )
        
        # Tab 2: Video Generation
        with gr.TabItem("🎬 Step 2: Generate Video"):
            with gr.Column(elem_classes="main-content"):
                gr.HTML('<h2 class="section-title">🎬 Video Generation from Image</h2>')
                
                with gr.Row():
                    with gr.Column():
                        video_input_image = gr.Image(
                            type="pil", 
                            label="Input Image (from Step 1 or upload new)",
                            elem_classes="image-container"
                        )
                        video_prompt = gr.Textbox(
                            label="Animation Prompt", 
                            value=default_prompt_i2v,
                            lines=3
                        )
                        duration_input = gr.Slider(
                            minimum=0.5, 
                            maximum=2.0, 
                            step=0.1, 
                            value=1.5, 
                            label="Duration (seconds)",
                            info="Shorter videos use less memory"
                        )
                        
                        with gr.Accordion("Advanced Settings", open=False):
                            video_negative_prompt = gr.Textbox(
                                label="Negative Prompt", 
                                value=default_negative_prompt, 
                                lines=3
                            )
                            video_seed = gr.Slider(
                                label="Seed", 
                                minimum=0, 
                                maximum=MAX_SEED, 
                                step=1, 
                                value=42
                            )
                            randomize_seed = gr.Checkbox(
                                label="Randomize seed", 
                                value=True
                            )
                            steps_slider = gr.Slider(
                                minimum=1, 
                                maximum=8, 
                                step=1, 
                                value=4, 
                                label="Inference Steps (4 recommended)"
                            )
                            guidance_1 = gr.Slider(
                                minimum=0.0, 
                                maximum=10.0, 
                                step=0.5, 
                                value=1, 
                                label="Guidance Scale - High Noise"
                            )
                            guidance_2 = gr.Slider(
                                minimum=0.0, 
                                maximum=10.0, 
                                step=0.5, 
                                value=1, 
                                label="Guidance Scale - Low Noise"
                            )
                        
                        generate_video_btn = gr.Button(
                            "Generate Video 🎬",
                            variant="primary",
                            size="lg"
                        )
                    
                    with gr.Column():
                        video_output = gr.Video(
                            label="Generated Video", 
                            autoplay=True
                        )
                        video_status = gr.Textbox(
                            label="Status",
                            interactive=False,
                            lines=1,
                            elem_classes="status-text",
                            value="Ready to generate video..."
                        )
    
    # Event Handlers
    def on_image_generated(prompt, img1, img2):
        img, status, state_img = process_images(prompt, img1, img2)
        if img:
            return img, status, state_img, gr.update(visible=True)
        return img, status, state_img, gr.update(visible=False)
    
    def send_image_to_video(img):
        if img:
            return img, "Image loaded! Ready to generate video."
        return None, "No image to send."
    
    # Image generation events
    generate_img_btn.click(
        fn=on_image_generated,
        inputs=[style_prompt, image1, image2],
        outputs=[output_image, img_status, generated_image_state, send_to_video_btn]
    )
    
    # Send to video tab
    send_to_video_btn.click(
        fn=send_image_to_video,
        inputs=[generated_image_state],
        outputs=[video_input_image, video_status]
    )
    
    # Video generation events
    video_inputs = [
        video_input_image, video_prompt, steps_slider,
        video_negative_prompt, duration_input,
        guidance_1, guidance_2, video_seed, randomize_seed
    ]
    
    def generate_video_wrapper(img, prompt, steps, neg_prompt, duration, g1, g2, seed, rand_seed):
        try:
            # Pass steps as first argument for GPU duration
            video_path, new_seed, status = generate_video(
                img, prompt, steps, neg_prompt, duration, g1, g2, seed, rand_seed
            )
            return video_path, new_seed, status
        except Exception as e:
            return None, seed, f"Error: {str(e)}"
    
    generate_video_btn.click(
        fn=generate_video_wrapper,
        inputs=video_inputs,
        outputs=[video_output, video_seed, video_status]
    )
    


# Launch
if __name__ == "__main__":
    # Don't initialize video pipeline on startup to avoid blocking
    print("Starting application...")
    print("Note: Video pipeline will initialize on first use")
    
    demo.launch(
        share=True,
        server_name="0.0.0.0",
        server_port=7860,
        show_error=True
    )