Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -51,6 +51,13 @@ def initialize_video_pipeline():
|
|
| 51 |
# Install PyTorch 2.8 (if needed)
|
| 52 |
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
|
| 53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
video_pipe = WanImageToVideoPipeline.from_pretrained(VIDEO_MODEL_ID,
|
| 55 |
transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
|
| 56 |
subfolder='transformer',
|
|
@@ -70,6 +77,16 @@ def initialize_video_pipeline():
|
|
| 70 |
gc.collect()
|
| 71 |
torch.cuda.synchronize()
|
| 72 |
torch.cuda.empty_cache()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
print("Video pipeline initialized successfully!")
|
| 75 |
except Exception as e:
|
|
@@ -225,7 +242,10 @@ def resize_image_landscape(image: Image.Image) -> Image.Image:
|
|
| 225 |
|
| 226 |
return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS)
|
| 227 |
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
| 229 |
def generate_video(
|
| 230 |
input_image,
|
| 231 |
prompt,
|
|
@@ -248,29 +268,55 @@ def generate_video(
|
|
| 248 |
if video_pipe is None:
|
| 249 |
raise gr.Error("Video pipeline not initialized. Please check GPU availability.")
|
| 250 |
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 274 |
|
| 275 |
# ===========================
|
| 276 |
# Enhanced CSS
|
|
@@ -383,7 +429,7 @@ with gr.Blocks(css=css, theme=gr.themes.Base()) as demo:
|
|
| 383 |
|
| 384 |
with gr.Column(elem_classes="header-container"):
|
| 385 |
gr.HTML("""
|
| 386 |
-
<h1 class="logo-text">🍌 Nano Banana + Video</h1>
|
| 387 |
<p class="subtitle">AI-Powered Image Style Transfer with Video Generation</p>
|
| 388 |
<div style="display: flex; justify-content: center; align-items: center; gap: 10px; margin-top: 20px;">
|
| 389 |
<a href="https://huggingface.co/spaces/openfree/Nano-Banana-Upscale" target="_blank">
|
|
@@ -570,12 +616,15 @@ with gr.Blocks(css=css, theme=gr.themes.Base()) as demo:
|
|
| 570 |
guidance_1, guidance_2, video_seed, randomize_seed
|
| 571 |
]
|
| 572 |
|
| 573 |
-
def generate_video_wrapper(
|
| 574 |
try:
|
| 575 |
-
|
| 576 |
-
|
|
|
|
|
|
|
|
|
|
| 577 |
except Exception as e:
|
| 578 |
-
return None,
|
| 579 |
|
| 580 |
generate_video_btn.click(
|
| 581 |
fn=generate_video_wrapper,
|
|
@@ -583,7 +632,18 @@ with gr.Blocks(css=css, theme=gr.themes.Base()) as demo:
|
|
| 583 |
outputs=[video_output, video_seed, video_status]
|
| 584 |
)
|
| 585 |
|
| 586 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 587 |
|
| 588 |
# Launch
|
| 589 |
if __name__ == "__main__":
|
|
|
|
| 51 |
# Install PyTorch 2.8 (if needed)
|
| 52 |
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
|
| 53 |
|
| 54 |
+
# Import optimization module
|
| 55 |
+
try:
|
| 56 |
+
from optimization import optimize_pipeline_
|
| 57 |
+
except ImportError:
|
| 58 |
+
print("Warning: optimization module not found, skipping optimization")
|
| 59 |
+
optimize_pipeline_ = None
|
| 60 |
+
|
| 61 |
video_pipe = WanImageToVideoPipeline.from_pretrained(VIDEO_MODEL_ID,
|
| 62 |
transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
|
| 63 |
subfolder='transformer',
|
|
|
|
| 77 |
gc.collect()
|
| 78 |
torch.cuda.synchronize()
|
| 79 |
torch.cuda.empty_cache()
|
| 80 |
+
|
| 81 |
+
# Optimize pipeline if module available
|
| 82 |
+
if optimize_pipeline_ is not None:
|
| 83 |
+
optimize_pipeline_(video_pipe,
|
| 84 |
+
image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)),
|
| 85 |
+
prompt='prompt',
|
| 86 |
+
height=LANDSCAPE_HEIGHT,
|
| 87 |
+
width=LANDSCAPE_WIDTH,
|
| 88 |
+
num_frames=MAX_FRAMES_MODEL,
|
| 89 |
+
)
|
| 90 |
|
| 91 |
print("Video pipeline initialized successfully!")
|
| 92 |
except Exception as e:
|
|
|
|
| 242 |
|
| 243 |
return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS)
|
| 244 |
|
| 245 |
+
def get_duration(steps):
|
| 246 |
+
return int(steps) * 15
|
| 247 |
+
|
| 248 |
+
@spaces.GPU(duration=get_duration)
|
| 249 |
def generate_video(
|
| 250 |
input_image,
|
| 251 |
prompt,
|
|
|
|
| 268 |
if video_pipe is None:
|
| 269 |
raise gr.Error("Video pipeline not initialized. Please check GPU availability.")
|
| 270 |
|
| 271 |
+
try:
|
| 272 |
+
# Ensure frames are divisible by 4
|
| 273 |
+
num_frames = int(round(duration_seconds * FIXED_FPS))
|
| 274 |
+
num_frames = np.clip(num_frames, MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
|
| 275 |
+
# Round to nearest number divisible by 4
|
| 276 |
+
num_frames = ((num_frames - 1) // 4) * 4 + 1
|
| 277 |
+
|
| 278 |
+
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
| 279 |
+
resized_image = resize_image_for_video(input_image)
|
| 280 |
+
|
| 281 |
+
# Clear cache before generation
|
| 282 |
+
torch.cuda.empty_cache()
|
| 283 |
+
gc.collect()
|
| 284 |
+
|
| 285 |
+
# Generate video with memory management
|
| 286 |
+
with torch.inference_mode():
|
| 287 |
+
output_frames_list = video_pipe(
|
| 288 |
+
image=resized_image,
|
| 289 |
+
prompt=prompt,
|
| 290 |
+
negative_prompt=negative_prompt,
|
| 291 |
+
height=resized_image.height,
|
| 292 |
+
width=resized_image.width,
|
| 293 |
+
num_frames=num_frames,
|
| 294 |
+
guidance_scale=float(guidance_scale),
|
| 295 |
+
guidance_scale_2=float(guidance_scale_2),
|
| 296 |
+
num_inference_steps=int(steps),
|
| 297 |
+
generator=torch.Generator(device="cuda").manual_seed(current_seed),
|
| 298 |
+
).frames[0]
|
| 299 |
+
|
| 300 |
+
# Clear cache after generation
|
| 301 |
+
torch.cuda.empty_cache()
|
| 302 |
+
gc.collect()
|
| 303 |
+
|
| 304 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
| 305 |
+
video_path = tmpfile.name
|
| 306 |
+
|
| 307 |
+
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
|
| 308 |
+
|
| 309 |
+
return video_path, current_seed, "🎬 Video generated successfully!"
|
| 310 |
+
|
| 311 |
+
except RuntimeError as e:
|
| 312 |
+
if "out of memory" in str(e).lower() or "CUDA" in str(e):
|
| 313 |
+
torch.cuda.empty_cache()
|
| 314 |
+
gc.collect()
|
| 315 |
+
raise gr.Error("GPU memory error. Try reducing the duration or number of steps.")
|
| 316 |
+
else:
|
| 317 |
+
raise gr.Error(f"Video generation error: {str(e)}")
|
| 318 |
+
except Exception as e:
|
| 319 |
+
raise gr.Error(f"Unexpected error: {str(e)}")
|
| 320 |
|
| 321 |
# ===========================
|
| 322 |
# Enhanced CSS
|
|
|
|
| 429 |
|
| 430 |
with gr.Column(elem_classes="header-container"):
|
| 431 |
gr.HTML("""
|
| 432 |
+
<h1 class="logo-text">🍌 Open Nano Banana + Video</h1>
|
| 433 |
<p class="subtitle">AI-Powered Image Style Transfer with Video Generation</p>
|
| 434 |
<div style="display: flex; justify-content: center; align-items: center; gap: 10px; margin-top: 20px;">
|
| 435 |
<a href="https://huggingface.co/spaces/openfree/Nano-Banana-Upscale" target="_blank">
|
|
|
|
| 616 |
guidance_1, guidance_2, video_seed, randomize_seed
|
| 617 |
]
|
| 618 |
|
| 619 |
+
def generate_video_wrapper(img, prompt, steps, neg_prompt, duration, g1, g2, seed, rand_seed):
|
| 620 |
try:
|
| 621 |
+
# Pass steps as first argument for GPU duration
|
| 622 |
+
video_path, new_seed, status = generate_video(
|
| 623 |
+
img, prompt, steps, neg_prompt, duration, g1, g2, seed, rand_seed
|
| 624 |
+
)
|
| 625 |
+
return video_path, new_seed, status
|
| 626 |
except Exception as e:
|
| 627 |
+
return None, seed, f"Error: {str(e)}"
|
| 628 |
|
| 629 |
generate_video_btn.click(
|
| 630 |
fn=generate_video_wrapper,
|
|
|
|
| 632 |
outputs=[video_output, video_seed, video_status]
|
| 633 |
)
|
| 634 |
|
| 635 |
+
# Examples for image generation
|
| 636 |
+
gr.Examples(
|
| 637 |
+
examples=[
|
| 638 |
+
["Create a dreamy watercolor style with soft pastels", "examples/photo1.jpg", None],
|
| 639 |
+
["Transform into cyberpunk neon aesthetic", "examples/photo2.jpg", "examples/style.jpg"],
|
| 640 |
+
["Make it look like Studio Ghibli animation", "examples/landscape.jpg", None],
|
| 641 |
+
],
|
| 642 |
+
inputs=[style_prompt, image1, image2],
|
| 643 |
+
outputs=[output_image, img_status],
|
| 644 |
+
fn=process_images,
|
| 645 |
+
cache_examples=False
|
| 646 |
+
)
|
| 647 |
|
| 648 |
# Launch
|
| 649 |
if __name__ == "__main__":
|