Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -43,20 +43,19 @@ default_negative_prompt = "static, still, no motion, frozen"
|
|
| 43 |
|
| 44 |
# Initialize once on startup
|
| 45 |
video_pipe = None
|
|
|
|
| 46 |
|
| 47 |
def initialize_video_pipeline():
|
| 48 |
-
global video_pipe
|
| 49 |
-
if video_pipe is None:
|
| 50 |
try:
|
|
|
|
|
|
|
| 51 |
# Install PyTorch 2.8 (if needed)
|
| 52 |
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
|
| 53 |
|
| 54 |
-
# Import
|
| 55 |
-
|
| 56 |
-
from optimization import optimize_pipeline_
|
| 57 |
-
except ImportError:
|
| 58 |
-
print("Warning: optimization module not found, skipping optimization")
|
| 59 |
-
optimize_pipeline_ = None
|
| 60 |
|
| 61 |
video_pipe = WanImageToVideoPipeline.from_pretrained(VIDEO_MODEL_ID,
|
| 62 |
transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
|
|
@@ -72,14 +71,30 @@ def initialize_video_pipeline():
|
|
| 72 |
torch_dtype=torch.bfloat16,
|
| 73 |
).to('cuda')
|
| 74 |
|
| 75 |
-
# Clear memory
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
#
|
| 82 |
-
|
|
|
|
|
|
|
| 83 |
optimize_pipeline_(video_pipe,
|
| 84 |
image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)),
|
| 85 |
prompt='prompt',
|
|
@@ -87,11 +102,19 @@ def initialize_video_pipeline():
|
|
| 87 |
width=LANDSCAPE_WIDTH,
|
| 88 |
num_frames=MAX_FRAMES_MODEL,
|
| 89 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
|
|
|
| 91 |
print("Video pipeline initialized successfully!")
|
|
|
|
| 92 |
except Exception as e:
|
| 93 |
print(f"Error initializing video pipeline: {e}")
|
| 94 |
video_pipe = None
|
|
|
|
| 95 |
|
| 96 |
# ===========================
|
| 97 |
# Image Processing Functions
|
|
@@ -647,14 +670,13 @@ with gr.Blocks(css=css, theme=gr.themes.Base()) as demo:
|
|
| 647 |
|
| 648 |
# Launch
|
| 649 |
if __name__ == "__main__":
|
| 650 |
-
#
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
except:
|
| 654 |
-
print("Video pipeline initialization deferred to first use")
|
| 655 |
|
| 656 |
demo.launch(
|
| 657 |
share=True,
|
| 658 |
server_name="0.0.0.0",
|
| 659 |
-
server_port=7860
|
|
|
|
| 660 |
)
|
|
|
|
| 43 |
|
| 44 |
# Initialize once on startup
|
| 45 |
video_pipe = None
|
| 46 |
+
video_pipeline_ready = False
|
| 47 |
|
| 48 |
def initialize_video_pipeline():
|
| 49 |
+
global video_pipe, video_pipeline_ready
|
| 50 |
+
if video_pipe is None and not video_pipeline_ready:
|
| 51 |
try:
|
| 52 |
+
print("Starting video pipeline initialization...")
|
| 53 |
+
|
| 54 |
# Install PyTorch 2.8 (if needed)
|
| 55 |
os.system('pip install --upgrade --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu126 "torch<2.9" spaces')
|
| 56 |
|
| 57 |
+
# Import LoRA loading utilities
|
| 58 |
+
from peft import LoraConfig, get_peft_model, TaskType
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
video_pipe = WanImageToVideoPipeline.from_pretrained(VIDEO_MODEL_ID,
|
| 61 |
transformer=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
|
|
|
|
| 71 |
torch_dtype=torch.bfloat16,
|
| 72 |
).to('cuda')
|
| 73 |
|
| 74 |
+
# Clear memory after loading
|
| 75 |
+
gc.collect()
|
| 76 |
+
torch.cuda.empty_cache()
|
| 77 |
+
|
| 78 |
+
# Load Lightning LoRA
|
| 79 |
+
try:
|
| 80 |
+
print("Loading Lightning LoRA adapter...")
|
| 81 |
+
video_pipe.transformer.load_adapter("Lightx2v/lightx2v_I2V_14B_480p_cfg_step_4", adapter_name="lightx2v")
|
| 82 |
+
video_pipe.transformer_2.load_adapter("Lightx2v/lightx2v_I2V_14B_480p_cfg_step_4", adapter_name="lightx2v_2")
|
| 83 |
+
video_pipe.transformer.set_adapters(["lightx2v"], adapter_weights=[1.0])
|
| 84 |
+
video_pipe.transformer_2.set_adapters(["lightx2v_2"], adapter_weights=[1.0])
|
| 85 |
+
print("Lightning LoRA loaded successfully")
|
| 86 |
+
except Exception as e:
|
| 87 |
+
print(f"Warning: Could not load Lightning LoRA: {e}")
|
| 88 |
+
# Continue without LoRA
|
| 89 |
+
|
| 90 |
+
# Clear memory again
|
| 91 |
+
gc.collect()
|
| 92 |
+
torch.cuda.empty_cache()
|
| 93 |
|
| 94 |
+
# Try to optimize if module available
|
| 95 |
+
try:
|
| 96 |
+
from optimization import optimize_pipeline_
|
| 97 |
+
print("Optimizing pipeline...")
|
| 98 |
optimize_pipeline_(video_pipe,
|
| 99 |
image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)),
|
| 100 |
prompt='prompt',
|
|
|
|
| 102 |
width=LANDSCAPE_WIDTH,
|
| 103 |
num_frames=MAX_FRAMES_MODEL,
|
| 104 |
)
|
| 105 |
+
print("Pipeline optimization complete")
|
| 106 |
+
except ImportError:
|
| 107 |
+
print("Optimization module not found, running without optimization")
|
| 108 |
+
except Exception as e:
|
| 109 |
+
print(f"Warning: Optimization failed: {e}")
|
| 110 |
|
| 111 |
+
video_pipeline_ready = True
|
| 112 |
print("Video pipeline initialized successfully!")
|
| 113 |
+
|
| 114 |
except Exception as e:
|
| 115 |
print(f"Error initializing video pipeline: {e}")
|
| 116 |
video_pipe = None
|
| 117 |
+
video_pipeline_ready = False
|
| 118 |
|
| 119 |
# ===========================
|
| 120 |
# Image Processing Functions
|
|
|
|
| 670 |
|
| 671 |
# Launch
|
| 672 |
if __name__ == "__main__":
|
| 673 |
+
# Don't initialize video pipeline on startup to avoid blocking
|
| 674 |
+
print("Starting application...")
|
| 675 |
+
print("Note: Video pipeline will initialize on first use")
|
|
|
|
|
|
|
| 676 |
|
| 677 |
demo.launch(
|
| 678 |
share=True,
|
| 679 |
server_name="0.0.0.0",
|
| 680 |
+
server_port=7860,
|
| 681 |
+
show_error=True
|
| 682 |
)
|