File size: 15,382 Bytes
472d535
 
 
 
 
 
 
 
 
e48246c
 
472d535
 
 
 
 
 
 
 
 
 
 
 
e48246c
 
 
472d535
e48246c
472d535
e48246c
472d535
e48246c
 
472d535
 
 
 
 
 
e48246c
472d535
 
 
 
 
 
 
 
 
 
 
cea104c
e48246c
472d535
 
 
 
 
 
cea104c
e48246c
472d535
e48246c
472d535
 
 
 
 
 
 
e48246c
472d535
 
 
 
e48246c
472d535
 
e48246c
472d535
 
e48246c
472d535
cea104c
472d535
e48246c
 
cea104c
e48246c
 
472d535
 
 
e48246c
 
 
cea104c
 
e48246c
472d535
e48246c
472d535
 
e48246c
 
 
 
472d535
 
e48246c
472d535
 
 
 
e48246c
 
 
 
 
472d535
e48246c
 
 
472d535
e48246c
 
 
472d535
 
e48246c
472d535
e48246c
472d535
 
 
e48246c
472d535
e48246c
 
cea104c
6312ef8
e48246c
 
 
 
6312ef8
f83c2b9
 
6312ef8
e48246c
 
 
 
 
 
cea104c
e48246c
6312ef8
e48246c
 
 
 
 
 
 
 
 
 
 
 
 
6312ef8
e48246c
 
 
 
 
 
 
 
 
 
 
 
 
 
6312ef8
e48246c
6312ef8
 
e48246c
 
cea104c
 
e48246c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472d535
 
e48246c
472d535
 
 
 
e48246c
 
472d535
 
e48246c
cea104c
e48246c
cea104c
 
472d535
 
cea104c
 
472d535
 
 
 
e48246c
472d535
 
e48246c
 
 
 
 
 
 
 
 
 
 
 
 
472d535
 
 
e48246c
472d535
 
e48246c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cea104c
 
e48246c
 
cea104c
 
e48246c
 
 
472d535
 
e48246c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cea104c
e48246c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472d535
e48246c
 
cea104c
e48246c
cea104c
472d535
 
cea104c
e48246c
 
 
 
 
472d535
 
e48246c
 
 
 
 
 
 
472d535
cea104c
e48246c
 
 
472d535
e48246c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
472d535
e48246c
 
 
 
 
 
cea104c
e48246c
 
 
 
cea104c
e48246c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import gradio as gr
import replicate
import os
from PIL import Image
import requests
from io import BytesIO
import time
import tempfile
import base64
import spaces
import torch
import numpy as np
import random
import gc

# ===========================
# Configuration
# ===========================

# Set up Replicate API key
os.environ['REPLICATE_API_TOKEN'] = os.getenv('REPLICATE_API_TOKEN')

# Video Model Configuration
VIDEO_MODEL_ID = "cjwbw/videocrafter2:02e509c789964be7d70de8d8fef3a6dd18f160b37272bcccc742d5adabb9f38f"  # Using public model
LANDSCAPE_WIDTH = 512  # Reduced for stability
LANDSCAPE_HEIGHT = 320  # Reduced for stability
MAX_SEED = np.iinfo(np.int32).max
FIXED_FPS = 8  # Reduced FPS
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 32  # Reduced max frames

default_prompt_i2v = "make this image come alive, smooth animation"
default_negative_prompt = "static, still, blurry, low quality"

# ===========================
# Image Processing Functions
# ===========================

def upload_image_to_hosting(image):
    """Upload image to hosting service"""
    try:
        buffered = BytesIO()
        image.save(buffered, format="PNG")
        buffered.seek(0)
        img_base64 = base64.b64encode(buffered.getvalue()).decode()
        
        response = requests.post(
            "https://api.imgbb.com/1/upload",
            data={
                'key': '6d207e02198a847aa98d0a2a901485a5',
                'image': img_base64,
            },
            timeout=30
        )
        
        if response.status_code == 200:
            data = response.json()
            if data.get('success'):
                return data['data']['url']
    except Exception as e:
        print(f"Upload failed: {e}")
    
    # Fallback to base64
    buffered = BytesIO()
    image.save(buffered, format="PNG")
    buffered.seek(0)
    img_base64 = base64.b64encode(buffered.getvalue()).decode()
    return f"data:image/png;base64,{img_base64}"

def process_images(prompt, image1, image2=None):
    """Process images using Replicate API"""
    if not image1:
        return None, "Please upload at least one image", None
    
    if not os.getenv('REPLICATE_API_TOKEN'):
        return None, "Please set REPLICATE_API_TOKEN in Space settings", None
    
    try:
        # Upload image
        url1 = upload_image_to_hosting(image1)
        
        # Use SDXL for image generation/editing
        output = replicate.run(
            "stability-ai/sdxl:39ed52f2a78e934b3ba6e2a89f5b1c712de7dfea535525255b1aa35c5565e08b",
            input={
                "prompt": prompt + ", high quality, detailed",
                "negative_prompt": "low quality, blurry, distorted",
                "width": 1024,
                "height": 1024,
                "num_inference_steps": 25
            }
        )
        
        if output and isinstance(output, list) and len(output) > 0:
            img_url = output[0]
            response = requests.get(img_url, timeout=30)
            if response.status_code == 200:
                img = Image.open(BytesIO(response.content))
                return img, "✨ Image generated successfully!", img
        
        return None, "Could not process output", None
        
    except Exception as e:
        error_msg = str(e)
        if "trial" in error_msg.lower():
            return None, "Replicate API limit reached. Please try again later.", None
        return None, f"Error: {error_msg[:200]}", None

# ===========================
# Video Generation Functions
# ===========================

def resize_image_for_video(image: Image.Image) -> Image.Image:
    """Resize image for video generation"""
    # Convert RGBA to RGB if necessary
    if image.mode == 'RGBA':
        background = Image.new('RGB', image.size, (255, 255, 255))
        background.paste(image, mask=image.split()[3])
        image = background
    
    # Resize to target dimensions
    image = image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS)
    return image

# GPU function with proper decorator
@spaces.GPU(duration=60)
def generate_video_gpu(
    input_image,
    prompt,
    steps=25,
    negative_prompt=default_negative_prompt,
    duration_seconds=2.0,
    seed=42,
    randomize_seed=False,
):
    """Generate video using Replicate API with GPU"""
    
    if input_image is None:
        return None, seed, "Please provide an input image"
    
    try:
        # Clear GPU memory
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            gc.collect()
        
        # Resize image
        resized_image = resize_image_for_video(input_image)
        
        # Save resized image temporarily
        with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_img:
            resized_image.save(tmp_img.name)
            
            # Upload to hosting
            img_url = upload_image_to_hosting(resized_image)
        
        current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
        
        # Use Replicate for video generation
        print("Generating video with Replicate...")
        output = replicate.run(
            VIDEO_MODEL_ID,
            input={
                "prompt": prompt,
                "image": img_url,
                "steps": int(steps),
                "fps": FIXED_FPS,
                "seconds": min(duration_seconds, 3),  # Limit to 3 seconds
                "seed": current_seed
            }
        )
        
        if output:
            # Download video
            if isinstance(output, str):
                video_url = output
            elif hasattr(output, 'url'):
                video_url = output.url()
            else:
                video_url = str(output)
            
            response = requests.get(video_url, timeout=60)
            if response.status_code == 200:
                with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp_video:
                    tmp_video.write(response.content)
                    return tmp_video.name, current_seed, "🎬 Video generated successfully!"
        
        return None, seed, "Failed to generate video"
        
    except Exception as e:
        error_msg = str(e)
        if "out of memory" in error_msg.lower():
            torch.cuda.empty_cache()
            gc.collect()
            return None, seed, "GPU memory exceeded. Try reducing duration."
        return None, seed, f"Error: {error_msg[:200]}"

# Wrapper function for video generation
def generate_video(
    input_image,
    prompt,
    steps=25,
    negative_prompt=default_negative_prompt,
    duration_seconds=2.0,
    seed=42,
    randomize_seed=False,
):
    """Wrapper function that calls the GPU function"""
    if not os.getenv('REPLICATE_API_TOKEN'):
        return None, seed, "Please set REPLICATE_API_TOKEN in Space settings"
    
    return generate_video_gpu(
        input_image,
        prompt,
        steps,
        negative_prompt,
        duration_seconds,
        seed,
        randomize_seed
    )

# ===========================
# Simple dummy GPU function for startup
# ===========================

@spaces.GPU(duration=1)
def dummy_gpu_function():
    """Dummy function to satisfy Spaces GPU requirement"""
    return "GPU initialized"

# ===========================
# CSS Styling
# ===========================

css = """
.gradio-container {
    max-width: 1200px !important;
    margin: 0 auto !important;
}
.header-container {
    background: linear-gradient(135deg, #ffd93d, #ffb347);
    padding: 2rem;
    border-radius: 15px;
    margin-bottom: 2rem;
    text-align: center;
}
.logo-text {
    font-size: 2.5rem;
    font-weight: bold;
    color: #2d3436;
}
.subtitle {
    color: #2d3436;
    font-size: 1.1rem;
    margin-top: 0.5rem;
}
.gr-button {
    font-size: 1rem !important;
    padding: 12px 24px !important;
}
.gr-button-primary {
    background: linear-gradient(135deg, #ffd93d, #ffb347) !important;
    border: none !important;
}
.gr-button-secondary {
    background: linear-gradient(135deg, #667eea, #764ba2) !important;
    color: white !important;
    border: none !important;
}
"""

# ===========================
# Gradio Interface
# ===========================

with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    # Initialize GPU on startup
    startup_status = gr.State(dummy_gpu_function())
    
    # Shared state
    generated_image_state = gr.State(None)
    
    gr.HTML("""
        <div class="header-container">
            <h1 class="logo-text">🍌 Nano Banana + Video</h1>
            <p class="subtitle">AI Image Generation with Video Creation</p>
            <p style="color: #636e72; font-size: 0.9rem; margin-top: 10px;">
                ⚠️ Note: Add REPLICATE_API_TOKEN in Space Settings > Repository secrets
            </p>
        </div>
    """)
    
    with gr.Tabs():
        # Tab 1: Image Generation
        with gr.TabItem("🎨 Step 1: Generate Image"):
            with gr.Row():
                with gr.Column(scale=1):
                    style_prompt = gr.Textbox(
                        label="Image Description",
                        placeholder="Describe what you want to create...",
                        lines=3,
                        value="A beautiful fantasy landscape with mountains and a river, studio ghibli style"
                    )
                    
                    with gr.Row():
                        image1 = gr.Image(
                            label="Reference Image (Optional)",
                            type="pil",
                            height=200
                        )
                        image2 = gr.Image(
                            label="Style Reference (Optional)",
                            type="pil",
                            height=200
                        )
                    
                    generate_img_btn = gr.Button(
                        "🎨 Generate Image",
                        variant="primary",
                        size="lg"
                    )
                
                with gr.Column(scale=1):
                    output_image = gr.Image(
                        label="Generated Result",
                        type="pil",
                        height=400
                    )
                    
                    img_status = gr.Textbox(
                        label="Status",
                        interactive=False,
                        value="Ready to generate..."
                    )
                    
                    send_to_video_btn = gr.Button(
                        "➡️ Send to Video Generation",
                        variant="secondary",
                        visible=False
                    )
        
        # Tab 2: Video Generation  
        with gr.TabItem("🎬 Step 2: Generate Video"):
            gr.Markdown("### Transform your image into a video")
            
            with gr.Row():
                with gr.Column(scale=1):
                    video_input_image = gr.Image(
                        type="pil",
                        label="Input Image",
                        height=300
                    )
                    
                    video_prompt = gr.Textbox(
                        label="Animation Description",
                        value=default_prompt_i2v,
                        lines=2
                    )
                    
                    with gr.Row():
                        duration_input = gr.Slider(
                            minimum=1.0,
                            maximum=3.0,
                            step=0.5,
                            value=2.0,
                            label="Duration (seconds)"
                        )
                        
                        steps_slider = gr.Slider(
                            minimum=10,
                            maximum=50,
                            step=5,
                            value=25,
                            label="Quality Steps"
                        )
                    
                    with gr.Row():
                        video_seed = gr.Slider(
                            label="Seed",
                            minimum=0,
                            maximum=MAX_SEED,
                            step=1,
                            value=42
                        )
                        
                        randomize_seed = gr.Checkbox(
                            label="Random seed",
                            value=True
                        )
                    
                    video_negative_prompt = gr.Textbox(
                        label="Negative Prompt",
                        value=default_negative_prompt,
                        lines=2
                    )
                    
                    generate_video_btn = gr.Button(
                        "🎬 Generate Video",
                        variant="primary",
                        size="lg"
                    )
                
                with gr.Column(scale=1):
                    video_output = gr.Video(
                        label="Generated Video",
                        autoplay=True,
                        height=400
                    )
                    
                    video_status = gr.Textbox(
                        label="Status",
                        interactive=False,
                        value="Ready to generate video..."
                    )
    
    # Event Handlers
    def on_image_generated(prompt, img1, img2):
        img, status, state_img = process_images(prompt, img1, img2)
        if img:
            return img, status, state_img, gr.update(visible=True)
        return None, status, None, gr.update(visible=False)
    
    def send_image_to_video(img):
        if img:
            return img, "Image loaded! Ready to generate video."
        return None, "No image to send."
    
    # Connect events
    generate_img_btn.click(
        fn=on_image_generated,
        inputs=[style_prompt, image1, image2],
        outputs=[output_image, img_status, generated_image_state, send_to_video_btn]
    )
    
    send_to_video_btn.click(
        fn=send_image_to_video,
        inputs=[generated_image_state],
        outputs=[video_input_image, video_status]
    )
    
    generate_video_btn.click(
        fn=generate_video,
        inputs=[
            video_input_image,
            video_prompt,
            steps_slider,
            video_negative_prompt,
            duration_input,
            video_seed,
            randomize_seed
        ],
        outputs=[video_output, video_seed, video_status]
    )
    
    # Examples
    gr.Examples(
        examples=[
            ["A majestic castle on a hilltop at sunset, fantasy art style"],
            ["Cute robot in a flower garden, pixar animation style"],
            ["Northern lights over a frozen lake, photorealistic"],
            ["Ancient temple in a jungle, mysterious atmosphere"],
        ],
        inputs=[style_prompt],
        label="Example Prompts"
    )

# Launch the app
if __name__ == "__main__":
    print("Starting Nano Banana + Video app...")
    print("Make sure to set REPLICATE_API_TOKEN in your Space settings!")
    
    demo.launch(
        share=False,
        show_error=True
    )