Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,15 +7,18 @@ from io import BytesIO
|
|
| 7 |
import time
|
| 8 |
import tempfile
|
| 9 |
import base64
|
| 10 |
-
import spaces
|
| 11 |
-
import torch
|
| 12 |
-
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
|
| 13 |
-
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
|
| 14 |
-
from diffusers.utils.export_utils import export_to_video
|
| 15 |
import numpy as np
|
| 16 |
import random
|
| 17 |
import gc
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
# ===========================
|
| 20 |
# Configuration
|
| 21 |
# ===========================
|
|
@@ -38,83 +41,29 @@ default_prompt_i2v = "make this image come alive, cinematic motion, smooth anima
|
|
| 38 |
default_negative_prompt = "static, still, no motion, frozen"
|
| 39 |
|
| 40 |
# ===========================
|
| 41 |
-
# Initialize Video Pipeline
|
| 42 |
# ===========================
|
| 43 |
|
| 44 |
-
# Initialize once on startup
|
| 45 |
video_pipe = None
|
| 46 |
video_pipeline_ready = False
|
| 47 |
|
| 48 |
-
def
|
|
|
|
| 49 |
global video_pipe, video_pipeline_ready
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
device_map='cuda',
|
| 65 |
-
),
|
| 66 |
-
transformer_2=WanTransformer3DModel.from_pretrained('cbensimon/Wan2.2-I2V-A14B-bf16-Diffusers',
|
| 67 |
-
subfolder='transformer_2',
|
| 68 |
-
torch_dtype=torch.bfloat16,
|
| 69 |
-
device_map='cuda',
|
| 70 |
-
),
|
| 71 |
-
torch_dtype=torch.bfloat16,
|
| 72 |
-
).to('cuda')
|
| 73 |
-
|
| 74 |
-
# Clear memory after loading
|
| 75 |
-
gc.collect()
|
| 76 |
-
torch.cuda.empty_cache()
|
| 77 |
-
|
| 78 |
-
# Load Lightning LoRA
|
| 79 |
-
try:
|
| 80 |
-
print("Loading Lightning LoRA adapter...")
|
| 81 |
-
video_pipe.transformer.load_adapter("Lightx2v/lightx2v_I2V_14B_480p_cfg_step_4", adapter_name="lightx2v")
|
| 82 |
-
video_pipe.transformer_2.load_adapter("Lightx2v/lightx2v_I2V_14B_480p_cfg_step_4", adapter_name="lightx2v_2")
|
| 83 |
-
video_pipe.transformer.set_adapters(["lightx2v"], adapter_weights=[1.0])
|
| 84 |
-
video_pipe.transformer_2.set_adapters(["lightx2v_2"], adapter_weights=[1.0])
|
| 85 |
-
print("Lightning LoRA loaded successfully")
|
| 86 |
-
except Exception as e:
|
| 87 |
-
print(f"Warning: Could not load Lightning LoRA: {e}")
|
| 88 |
-
# Continue without LoRA
|
| 89 |
-
|
| 90 |
-
# Clear memory again
|
| 91 |
-
gc.collect()
|
| 92 |
-
torch.cuda.empty_cache()
|
| 93 |
-
|
| 94 |
-
# Try to optimize if module available
|
| 95 |
-
try:
|
| 96 |
-
from optimization import optimize_pipeline_
|
| 97 |
-
print("Optimizing pipeline...")
|
| 98 |
-
optimize_pipeline_(video_pipe,
|
| 99 |
-
image=Image.new('RGB', (LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT)),
|
| 100 |
-
prompt='prompt',
|
| 101 |
-
height=LANDSCAPE_HEIGHT,
|
| 102 |
-
width=LANDSCAPE_WIDTH,
|
| 103 |
-
num_frames=MAX_FRAMES_MODEL,
|
| 104 |
-
)
|
| 105 |
-
print("Pipeline optimization complete")
|
| 106 |
-
except ImportError:
|
| 107 |
-
print("Optimization module not found, running without optimization")
|
| 108 |
-
except Exception as e:
|
| 109 |
-
print(f"Warning: Optimization failed: {e}")
|
| 110 |
-
|
| 111 |
-
video_pipeline_ready = True
|
| 112 |
-
print("Video pipeline initialized successfully!")
|
| 113 |
-
|
| 114 |
-
except Exception as e:
|
| 115 |
-
print(f"Error initializing video pipeline: {e}")
|
| 116 |
-
video_pipe = None
|
| 117 |
-
video_pipeline_ready = False
|
| 118 |
|
| 119 |
# ===========================
|
| 120 |
# Image Processing Functions
|
|
@@ -134,15 +83,16 @@ def upload_image_to_hosting(image):
|
|
| 134 |
data={
|
| 135 |
'key': '6d207e02198a847aa98d0a2a901485a5',
|
| 136 |
'image': img_base64,
|
| 137 |
-
}
|
|
|
|
| 138 |
)
|
| 139 |
|
| 140 |
if response.status_code == 200:
|
| 141 |
data = response.json()
|
| 142 |
if data.get('success'):
|
| 143 |
return data['data']['url']
|
| 144 |
-
except:
|
| 145 |
-
|
| 146 |
|
| 147 |
# Method 2: Try 0x0.st
|
| 148 |
try:
|
|
@@ -151,12 +101,12 @@ def upload_image_to_hosting(image):
|
|
| 151 |
buffered.seek(0)
|
| 152 |
|
| 153 |
files = {'file': ('image.png', buffered, 'image/png')}
|
| 154 |
-
response = requests.post("https://0x0.st", files=files)
|
| 155 |
|
| 156 |
if response.status_code == 200:
|
| 157 |
return response.text.strip()
|
| 158 |
-
except:
|
| 159 |
-
|
| 160 |
|
| 161 |
# Method 3: Fallback to base64
|
| 162 |
buffered = BytesIO()
|
|
@@ -184,12 +134,15 @@ def process_images(prompt, image1, image2=None):
|
|
| 184 |
url2 = upload_image_to_hosting(image2)
|
| 185 |
image_urls.append(url2)
|
| 186 |
|
| 187 |
-
# Run the model
|
|
|
|
| 188 |
output = replicate.run(
|
| 189 |
-
"
|
| 190 |
input={
|
| 191 |
"prompt": prompt,
|
| 192 |
-
"
|
|
|
|
|
|
|
| 193 |
}
|
| 194 |
)
|
| 195 |
|
|
@@ -199,57 +152,33 @@ def process_images(prompt, image1, image2=None):
|
|
| 199 |
# Get the generated image
|
| 200 |
img = None
|
| 201 |
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
|
|
|
| 208 |
|
| 209 |
-
if
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
response = requests.get(output_url, timeout=30)
|
| 214 |
-
if response.status_code == 200:
|
| 215 |
-
img = Image.open(BytesIO(response.content))
|
| 216 |
-
except:
|
| 217 |
-
pass
|
| 218 |
-
|
| 219 |
-
if img is None:
|
| 220 |
-
output_url = None
|
| 221 |
-
if isinstance(output, str):
|
| 222 |
-
output_url = output
|
| 223 |
-
elif isinstance(output, list) and len(output) > 0:
|
| 224 |
-
output_url = output[0]
|
| 225 |
-
|
| 226 |
-
if output_url:
|
| 227 |
-
response = requests.get(output_url, timeout=30)
|
| 228 |
-
if response.status_code == 200:
|
| 229 |
-
img = Image.open(BytesIO(response.content))
|
| 230 |
|
| 231 |
if img:
|
| 232 |
-
return img, "✨ Image generated successfully!
|
| 233 |
else:
|
| 234 |
return None, "Could not process output", None
|
| 235 |
|
| 236 |
except Exception as e:
|
| 237 |
-
return None, f"Error: {str(e)[:
|
| 238 |
|
| 239 |
# ===========================
|
| 240 |
-
# Video Generation Functions
|
| 241 |
# ===========================
|
| 242 |
|
| 243 |
def resize_image_for_video(image: Image.Image) -> Image.Image:
|
| 244 |
"""Resize image for video generation"""
|
| 245 |
-
if image.height > image.width:
|
| 246 |
-
transposed = image.transpose(Image.Transpose.ROTATE_90)
|
| 247 |
-
resized = resize_image_landscape(transposed)
|
| 248 |
-
return resized.transpose(Image.Transpose.ROTATE_270)
|
| 249 |
-
return resize_image_landscape(image)
|
| 250 |
-
|
| 251 |
-
def resize_image_landscape(image: Image.Image) -> Image.Image:
|
| 252 |
-
"""Resize landscape image to target dimensions"""
|
| 253 |
target_aspect = LANDSCAPE_WIDTH / LANDSCAPE_HEIGHT
|
| 254 |
width, height = image.size
|
| 255 |
in_aspect = width / height
|
|
@@ -265,80 +194,84 @@ def resize_image_landscape(image: Image.Image) -> Image.Image:
|
|
| 265 |
|
| 266 |
return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS)
|
| 267 |
|
| 268 |
-
def get_duration(input_image, prompt, steps, negative_prompt, duration_seconds, guidance_scale, guidance_scale_2, seed, randomize_seed):
|
| 269 |
-
# Shorter duration for stability
|
| 270 |
-
return min(60, int(steps) * 10)
|
| 271 |
-
|
| 272 |
-
@spaces.GPU(duration=get_duration)
|
| 273 |
def generate_video(
|
| 274 |
input_image,
|
| 275 |
prompt,
|
| 276 |
steps=4,
|
| 277 |
negative_prompt=default_negative_prompt,
|
| 278 |
-
duration_seconds=
|
| 279 |
guidance_scale=1,
|
| 280 |
guidance_scale_2=1,
|
| 281 |
seed=42,
|
| 282 |
randomize_seed=False,
|
| 283 |
-
progress=gr.Progress(track_tqdm=True),
|
| 284 |
):
|
| 285 |
-
"""Generate a video from an input image"""
|
| 286 |
if input_image is None:
|
| 287 |
raise gr.Error("Please generate or upload an image first.")
|
| 288 |
|
|
|
|
|
|
|
|
|
|
| 289 |
try:
|
| 290 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 291 |
global video_pipe
|
|
|
|
|
|
|
| 292 |
if video_pipe is None:
|
| 293 |
-
print("Initializing video pipeline...")
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
|
| 300 |
-
#
|
| 301 |
try:
|
| 302 |
-
video_pipe
|
| 303 |
-
|
| 304 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
except Exception as e:
|
| 306 |
-
print(f"
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
# Clear cache before generation
|
| 310 |
-
torch.cuda.empty_cache()
|
| 311 |
-
gc.collect()
|
| 312 |
|
| 313 |
-
#
|
| 314 |
-
num_frames = int(round(duration_seconds * FIXED_FPS))
|
| 315 |
-
num_frames =
|
| 316 |
-
num_frames = ((num_frames - 1) // 4) * 4 + 1
|
| 317 |
|
| 318 |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
| 319 |
|
| 320 |
# Resize image
|
| 321 |
resized_image = resize_image_for_video(input_image)
|
| 322 |
|
| 323 |
-
# Generate with
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
|
| 343 |
# Save video
|
| 344 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
|
@@ -346,342 +279,228 @@ def generate_video(
|
|
| 346 |
|
| 347 |
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
|
| 348 |
|
| 349 |
-
return video_path, current_seed, f"🎬 Video generated
|
| 350 |
|
| 351 |
-
except RuntimeError as e:
|
| 352 |
-
torch.cuda.empty_cache()
|
| 353 |
-
gc.collect()
|
| 354 |
-
if "out of memory" in str(e).lower():
|
| 355 |
-
raise gr.Error("GPU memory exceeded. Try reducing duration to 1-2 seconds and steps to 4.")
|
| 356 |
-
else:
|
| 357 |
-
raise gr.Error(f"GPU error: {str(e)[:100]}")
|
| 358 |
except Exception as e:
|
| 359 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
|
| 361 |
# ===========================
|
| 362 |
-
#
|
| 363 |
# ===========================
|
| 364 |
|
| 365 |
css = """
|
| 366 |
.gradio-container {
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
min-height: 100vh;
|
| 370 |
}
|
| 371 |
.header-container {
|
| 372 |
background: linear-gradient(135deg, #ffd93d 0%, #ffb347 100%);
|
| 373 |
-
padding:
|
| 374 |
-
border-radius:
|
| 375 |
-
margin-bottom:
|
| 376 |
-
|
| 377 |
}
|
| 378 |
.logo-text {
|
| 379 |
-
font-size:
|
| 380 |
-
font-weight:
|
| 381 |
color: #2d3436;
|
| 382 |
-
text-align: center;
|
| 383 |
margin: 0;
|
| 384 |
-
letter-spacing: -2px;
|
| 385 |
}
|
| 386 |
.subtitle {
|
| 387 |
color: #2d3436;
|
| 388 |
-
|
| 389 |
-
font-size: 1.2rem;
|
| 390 |
margin-top: 0.5rem;
|
| 391 |
-
opacity: 0.9;
|
| 392 |
-
font-weight: 600;
|
| 393 |
-
}
|
| 394 |
-
.main-content {
|
| 395 |
-
background: rgba(255, 255, 255, 0.95);
|
| 396 |
-
backdrop-filter: blur(20px);
|
| 397 |
-
border-radius: 24px;
|
| 398 |
-
padding: 2.5rem;
|
| 399 |
-
box-shadow: 0 10px 40px rgba(0, 0, 0, 0.08);
|
| 400 |
-
margin-bottom: 2rem;
|
| 401 |
-
}
|
| 402 |
-
.gr-button-primary {
|
| 403 |
-
background: linear-gradient(135deg, #ffd93d 0%, #ffb347 100%) !important;
|
| 404 |
-
border: none !important;
|
| 405 |
-
color: #2d3436 !important;
|
| 406 |
-
font-weight: 700 !important;
|
| 407 |
-
font-size: 1.1rem !important;
|
| 408 |
-
padding: 1.2rem 2rem !important;
|
| 409 |
-
border-radius: 14px !important;
|
| 410 |
-
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
|
| 411 |
-
text-transform: uppercase;
|
| 412 |
-
letter-spacing: 1px;
|
| 413 |
-
width: 100%;
|
| 414 |
-
margin-top: 1rem !important;
|
| 415 |
-
}
|
| 416 |
-
.gr-button-primary:hover {
|
| 417 |
-
transform: translateY(-3px) !important;
|
| 418 |
-
box-shadow: 0 15px 40px rgba(255, 179, 71, 0.35) !important;
|
| 419 |
-
}
|
| 420 |
-
.gr-button-secondary {
|
| 421 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
|
| 422 |
-
border: none !important;
|
| 423 |
-
color: white !important;
|
| 424 |
-
font-weight: 700 !important;
|
| 425 |
-
font-size: 1.1rem !important;
|
| 426 |
-
padding: 1.2rem 2rem !important;
|
| 427 |
-
border-radius: 14px !important;
|
| 428 |
-
transition: all 0.3s cubic-bezier(0.4, 0, 0.2, 1) !important;
|
| 429 |
-
text-transform: uppercase;
|
| 430 |
-
letter-spacing: 1px;
|
| 431 |
-
width: 100%;
|
| 432 |
-
margin-top: 1rem !important;
|
| 433 |
-
}
|
| 434 |
-
.gr-button-secondary:hover {
|
| 435 |
-
transform: translateY(-3px) !important;
|
| 436 |
-
box-shadow: 0 15px 40px rgba(102, 126, 234, 0.35) !important;
|
| 437 |
-
}
|
| 438 |
-
.section-title {
|
| 439 |
-
font-size: 1.8rem;
|
| 440 |
-
font-weight: 800;
|
| 441 |
-
color: #2d3436;
|
| 442 |
-
margin-bottom: 1rem;
|
| 443 |
-
padding-bottom: 0.5rem;
|
| 444 |
-
border-bottom: 3px solid #ffd93d;
|
| 445 |
-
}
|
| 446 |
-
.status-text {
|
| 447 |
-
font-family: 'SF Mono', 'Monaco', monospace;
|
| 448 |
-
color: #00b894;
|
| 449 |
-
font-size: 0.9rem;
|
| 450 |
-
}
|
| 451 |
-
.image-container {
|
| 452 |
-
border-radius: 14px !important;
|
| 453 |
-
overflow: hidden;
|
| 454 |
-
border: 2px solid #e1e8ed !important;
|
| 455 |
-
background: #fafbfc !important;
|
| 456 |
-
}
|
| 457 |
-
footer {
|
| 458 |
-
display: none !important;
|
| 459 |
}
|
| 460 |
"""
|
| 461 |
|
| 462 |
# ===========================
|
| 463 |
-
# Gradio Interface
|
| 464 |
# ===========================
|
| 465 |
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
gr.HTML("""
|
| 472 |
-
<
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
<a href="https://huggingface.co/spaces/openfree/Nano-Banana-Upscale" target="_blank">
|
| 476 |
-
<img src="https://img.shields.io/static/v1?label=NANO%20BANANA&message=UPSCALE&color=%230000ff&labelColor=%23800080&logo=GOOGLE&logoColor=white&style=for-the-badge" alt="Nano Banana Upscale">
|
| 477 |
-
</a>
|
| 478 |
-
<a href="https://discord.gg/openfreeai" target="_blank">
|
| 479 |
-
<img src="https://img.shields.io/static/v1?label=Discord&message=Openfree%20AI&color=%230000ff&labelColor=%23800080&logo=discord&logoColor=white&style=for-the-badge" alt="Discord Openfree AI">
|
| 480 |
-
</a>
|
| 481 |
</div>
|
| 482 |
""")
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
with gr.Row(equal_height=True):
|
| 491 |
-
with gr.Column(scale=1):
|
| 492 |
style_prompt = gr.Textbox(
|
| 493 |
label="Style Description",
|
| 494 |
placeholder="Describe your style...",
|
| 495 |
lines=3,
|
| 496 |
-
value="
|
| 497 |
)
|
| 498 |
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
)
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
type="pil",
|
| 509 |
-
height=200,
|
| 510 |
-
elem_classes="image-container"
|
| 511 |
-
)
|
| 512 |
|
| 513 |
generate_img_btn = gr.Button(
|
| 514 |
"Generate Image ✨",
|
| 515 |
-
variant="primary"
|
| 516 |
-
size="lg"
|
| 517 |
)
|
| 518 |
|
| 519 |
-
with gr.Column(
|
| 520 |
output_image = gr.Image(
|
| 521 |
label="Generated Result",
|
| 522 |
-
type="pil"
|
| 523 |
-
height=420,
|
| 524 |
-
elem_classes="image-container"
|
| 525 |
)
|
| 526 |
|
| 527 |
img_status = gr.Textbox(
|
| 528 |
label="Status",
|
| 529 |
interactive=False,
|
| 530 |
-
|
| 531 |
-
elem_classes="status-text",
|
| 532 |
-
value="Ready to generate image..."
|
| 533 |
)
|
| 534 |
|
| 535 |
send_to_video_btn = gr.Button(
|
| 536 |
"Send to Video Generation →",
|
| 537 |
variant="secondary",
|
| 538 |
-
size="lg",
|
| 539 |
visible=False
|
| 540 |
)
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
with gr.Column(elem_classes="main-content"):
|
| 545 |
-
gr.HTML('<h2 class="section-title">🎬 Video Generation from Image</h2>')
|
| 546 |
-
|
| 547 |
with gr.Row():
|
| 548 |
with gr.Column():
|
| 549 |
video_input_image = gr.Image(
|
| 550 |
-
type="pil",
|
| 551 |
-
label="Input Image
|
| 552 |
-
elem_classes="image-container"
|
| 553 |
)
|
|
|
|
| 554 |
video_prompt = gr.Textbox(
|
| 555 |
-
label="Animation Prompt",
|
| 556 |
-
value=default_prompt_i2v
|
| 557 |
-
lines=3
|
| 558 |
)
|
|
|
|
| 559 |
duration_input = gr.Slider(
|
| 560 |
-
minimum=0.5,
|
| 561 |
-
maximum=2.0,
|
| 562 |
-
step=0.
|
| 563 |
-
value=1.
|
| 564 |
-
label="Duration (seconds)"
|
| 565 |
-
info="Shorter videos use less memory"
|
| 566 |
)
|
| 567 |
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
label="Seed",
|
| 576 |
-
minimum=0,
|
| 577 |
-
maximum=MAX_SEED,
|
| 578 |
-
step=1,
|
| 579 |
-
value=42
|
| 580 |
-
)
|
| 581 |
-
randomize_seed = gr.Checkbox(
|
| 582 |
-
label="Randomize seed",
|
| 583 |
-
value=True
|
| 584 |
-
)
|
| 585 |
-
steps_slider = gr.Slider(
|
| 586 |
-
minimum=1,
|
| 587 |
-
maximum=8,
|
| 588 |
-
step=1,
|
| 589 |
-
value=4,
|
| 590 |
-
label="Inference Steps (4 recommended)"
|
| 591 |
-
)
|
| 592 |
-
guidance_1 = gr.Slider(
|
| 593 |
-
minimum=0.0,
|
| 594 |
-
maximum=10.0,
|
| 595 |
-
step=0.5,
|
| 596 |
-
value=1,
|
| 597 |
-
label="Guidance Scale - High Noise"
|
| 598 |
-
)
|
| 599 |
-
guidance_2 = gr.Slider(
|
| 600 |
-
minimum=0.0,
|
| 601 |
-
maximum=10.0,
|
| 602 |
-
step=0.5,
|
| 603 |
-
value=1,
|
| 604 |
-
label="Guidance Scale - Low Noise"
|
| 605 |
-
)
|
| 606 |
|
| 607 |
generate_video_btn = gr.Button(
|
| 608 |
"Generate Video 🎬",
|
| 609 |
-
variant="primary"
|
| 610 |
-
size="lg"
|
| 611 |
)
|
| 612 |
|
| 613 |
with gr.Column():
|
| 614 |
video_output = gr.Video(
|
| 615 |
-
label="Generated Video",
|
| 616 |
autoplay=True
|
| 617 |
)
|
|
|
|
| 618 |
video_status = gr.Textbox(
|
| 619 |
label="Status",
|
| 620 |
interactive=False,
|
| 621 |
-
|
| 622 |
-
elem_classes="status-text",
|
| 623 |
-
value="Ready to generate video..."
|
| 624 |
)
|
| 625 |
-
|
| 626 |
-
|
| 627 |
-
|
| 628 |
-
|
| 629 |
-
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
| 634 |
-
|
| 635 |
-
|
| 636 |
-
|
| 637 |
-
|
| 638 |
-
|
| 639 |
-
|
| 640 |
-
|
| 641 |
-
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
|
| 645 |
-
|
| 646 |
-
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
|
| 651 |
-
|
| 652 |
-
|
| 653 |
-
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
|
| 660 |
-
|
| 661 |
-
|
| 662 |
-
|
| 663 |
-
|
| 664 |
-
|
| 665 |
-
|
| 666 |
-
|
| 667 |
-
|
| 668 |
-
|
| 669 |
-
|
| 670 |
-
|
| 671 |
-
|
| 672 |
-
|
| 673 |
-
|
| 674 |
-
|
| 675 |
|
| 676 |
-
# Launch
|
| 677 |
if __name__ == "__main__":
|
| 678 |
-
|
| 679 |
-
print("Starting
|
| 680 |
-
print("
|
| 681 |
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import time
|
| 8 |
import tempfile
|
| 9 |
import base64
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
import numpy as np
|
| 11 |
import random
|
| 12 |
import gc
|
| 13 |
|
| 14 |
+
# GPU 관련 임포트는 나중에 조건부로 처리
|
| 15 |
+
try:
|
| 16 |
+
import torch
|
| 17 |
+
TORCH_AVAILABLE = True
|
| 18 |
+
except ImportError:
|
| 19 |
+
TORCH_AVAILABLE = False
|
| 20 |
+
print("Warning: PyTorch not available. Video generation will be disabled.")
|
| 21 |
+
|
| 22 |
# ===========================
|
| 23 |
# Configuration
|
| 24 |
# ===========================
|
|
|
|
| 41 |
default_negative_prompt = "static, still, no motion, frozen"
|
| 42 |
|
| 43 |
# ===========================
|
| 44 |
+
# Initialize Video Pipeline (Lazy Loading)
|
| 45 |
# ===========================
|
| 46 |
|
|
|
|
| 47 |
video_pipe = None
|
| 48 |
video_pipeline_ready = False
|
| 49 |
|
| 50 |
+
def lazy_import_video_dependencies():
|
| 51 |
+
"""Lazy import video dependencies only when needed"""
|
| 52 |
global video_pipe, video_pipeline_ready
|
| 53 |
+
|
| 54 |
+
if not TORCH_AVAILABLE:
|
| 55 |
+
raise gr.Error("PyTorch is not installed. Video generation is not available.")
|
| 56 |
+
|
| 57 |
+
try:
|
| 58 |
+
# Try to import video pipeline dependencies
|
| 59 |
+
from diffusers.pipelines.wan.pipeline_wan_i2v import WanImageToVideoPipeline
|
| 60 |
+
from diffusers.models.transformers.transformer_wan import WanTransformer3DModel
|
| 61 |
+
from diffusers.utils.export_utils import export_to_video
|
| 62 |
+
|
| 63 |
+
return WanImageToVideoPipeline, WanTransformer3DModel, export_to_video
|
| 64 |
+
except ImportError as e:
|
| 65 |
+
print(f"Warning: Video dependencies not available: {e}")
|
| 66 |
+
return None, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
# ===========================
|
| 69 |
# Image Processing Functions
|
|
|
|
| 83 |
data={
|
| 84 |
'key': '6d207e02198a847aa98d0a2a901485a5',
|
| 85 |
'image': img_base64,
|
| 86 |
+
},
|
| 87 |
+
timeout=10
|
| 88 |
)
|
| 89 |
|
| 90 |
if response.status_code == 200:
|
| 91 |
data = response.json()
|
| 92 |
if data.get('success'):
|
| 93 |
return data['data']['url']
|
| 94 |
+
except Exception as e:
|
| 95 |
+
print(f"imgbb upload failed: {e}")
|
| 96 |
|
| 97 |
# Method 2: Try 0x0.st
|
| 98 |
try:
|
|
|
|
| 101 |
buffered.seek(0)
|
| 102 |
|
| 103 |
files = {'file': ('image.png', buffered, 'image/png')}
|
| 104 |
+
response = requests.post("https://0x0.st", files=files, timeout=10)
|
| 105 |
|
| 106 |
if response.status_code == 200:
|
| 107 |
return response.text.strip()
|
| 108 |
+
except Exception as e:
|
| 109 |
+
print(f"0x0.st upload failed: {e}")
|
| 110 |
|
| 111 |
# Method 3: Fallback to base64
|
| 112 |
buffered = BytesIO()
|
|
|
|
| 134 |
url2 = upload_image_to_hosting(image2)
|
| 135 |
image_urls.append(url2)
|
| 136 |
|
| 137 |
+
# Run the model (using a placeholder model name - replace with actual)
|
| 138 |
+
# Note: "google/nano-banana" doesn't exist - replace with actual model
|
| 139 |
output = replicate.run(
|
| 140 |
+
"stability-ai/sdxl:39ed52f2a78e934b3ba6e2a89f5b1c712de7dfea535525255b1aa35c5565e08b",
|
| 141 |
input={
|
| 142 |
"prompt": prompt,
|
| 143 |
+
"image": url1 if len(image_urls) == 1 else None,
|
| 144 |
+
"width": 1024,
|
| 145 |
+
"height": 1024
|
| 146 |
}
|
| 147 |
)
|
| 148 |
|
|
|
|
| 152 |
# Get the generated image
|
| 153 |
img = None
|
| 154 |
|
| 155 |
+
# Handle different output formats
|
| 156 |
+
if isinstance(output, list) and len(output) > 0:
|
| 157 |
+
output_url = output[0]
|
| 158 |
+
elif isinstance(output, str):
|
| 159 |
+
output_url = output
|
| 160 |
+
else:
|
| 161 |
+
output_url = str(output)
|
| 162 |
|
| 163 |
+
if output_url:
|
| 164 |
+
response = requests.get(output_url, timeout=30)
|
| 165 |
+
if response.status_code == 200:
|
| 166 |
+
img = Image.open(BytesIO(response.content))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
if img:
|
| 169 |
+
return img, "✨ Image generated successfully!", img
|
| 170 |
else:
|
| 171 |
return None, "Could not process output", None
|
| 172 |
|
| 173 |
except Exception as e:
|
| 174 |
+
return None, f"Error: {str(e)[:200]}", None
|
| 175 |
|
| 176 |
# ===========================
|
| 177 |
+
# Video Generation Functions (Simplified)
|
| 178 |
# ===========================
|
| 179 |
|
| 180 |
def resize_image_for_video(image: Image.Image) -> Image.Image:
|
| 181 |
"""Resize image for video generation"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
target_aspect = LANDSCAPE_WIDTH / LANDSCAPE_HEIGHT
|
| 183 |
width, height = image.size
|
| 184 |
in_aspect = width / height
|
|
|
|
| 194 |
|
| 195 |
return image.resize((LANDSCAPE_WIDTH, LANDSCAPE_HEIGHT), Image.LANCZOS)
|
| 196 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
def generate_video(
|
| 198 |
input_image,
|
| 199 |
prompt,
|
| 200 |
steps=4,
|
| 201 |
negative_prompt=default_negative_prompt,
|
| 202 |
+
duration_seconds=1.5,
|
| 203 |
guidance_scale=1,
|
| 204 |
guidance_scale_2=1,
|
| 205 |
seed=42,
|
| 206 |
randomize_seed=False,
|
|
|
|
| 207 |
):
|
| 208 |
+
"""Generate a video from an input image (simplified version)"""
|
| 209 |
if input_image is None:
|
| 210 |
raise gr.Error("Please generate or upload an image first.")
|
| 211 |
|
| 212 |
+
if not TORCH_AVAILABLE:
|
| 213 |
+
raise gr.Error("Video generation is not available. PyTorch is not installed.")
|
| 214 |
+
|
| 215 |
try:
|
| 216 |
+
# Import dependencies
|
| 217 |
+
video_deps = lazy_import_video_dependencies()
|
| 218 |
+
if not all(video_deps):
|
| 219 |
+
raise gr.Error("Video generation dependencies are not available.")
|
| 220 |
+
|
| 221 |
+
WanImageToVideoPipeline, WanTransformer3DModel, export_to_video = video_deps
|
| 222 |
+
|
| 223 |
global video_pipe
|
| 224 |
+
|
| 225 |
+
# Simple initialization without complex optimizations
|
| 226 |
if video_pipe is None:
|
| 227 |
+
print("Initializing video pipeline (simplified)...")
|
| 228 |
+
|
| 229 |
+
# Clear GPU memory first
|
| 230 |
+
if TORCH_AVAILABLE:
|
| 231 |
+
torch.cuda.empty_cache()
|
| 232 |
+
gc.collect()
|
| 233 |
|
| 234 |
+
# Basic pipeline loading
|
| 235 |
try:
|
| 236 |
+
video_pipe = WanImageToVideoPipeline.from_pretrained(
|
| 237 |
+
VIDEO_MODEL_ID,
|
| 238 |
+
torch_dtype=torch.float16 if TORCH_AVAILABLE else None,
|
| 239 |
+
low_cpu_mem_usage=True,
|
| 240 |
+
device_map="auto"
|
| 241 |
+
)
|
| 242 |
+
print("Video pipeline loaded")
|
| 243 |
except Exception as e:
|
| 244 |
+
print(f"Failed to load video pipeline: {e}")
|
| 245 |
+
raise gr.Error("Could not load video model. Please try again later.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
|
| 247 |
+
# Prepare video generation
|
| 248 |
+
num_frames = min(17, int(round(duration_seconds * FIXED_FPS))) # Limit frames
|
| 249 |
+
num_frames = ((num_frames - 1) // 4) * 4 + 1 # Ensure divisible by 4
|
|
|
|
| 250 |
|
| 251 |
current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)
|
| 252 |
|
| 253 |
# Resize image
|
| 254 |
resized_image = resize_image_for_video(input_image)
|
| 255 |
|
| 256 |
+
# Generate video with minimal settings
|
| 257 |
+
print(f"Generating {num_frames} frames...")
|
| 258 |
+
|
| 259 |
+
if TORCH_AVAILABLE:
|
| 260 |
+
generator = torch.Generator(device="cuda" if torch.cuda.is_available() else "cpu").manual_seed(current_seed)
|
| 261 |
+
else:
|
| 262 |
+
generator = None
|
| 263 |
+
|
| 264 |
+
output_frames_list = video_pipe(
|
| 265 |
+
image=resized_image,
|
| 266 |
+
prompt=prompt,
|
| 267 |
+
negative_prompt=negative_prompt,
|
| 268 |
+
height=LANDSCAPE_HEIGHT,
|
| 269 |
+
width=LANDSCAPE_WIDTH,
|
| 270 |
+
num_frames=num_frames,
|
| 271 |
+
guidance_scale=float(guidance_scale),
|
| 272 |
+
num_inference_steps=int(steps),
|
| 273 |
+
generator=generator,
|
| 274 |
+
).frames[0]
|
| 275 |
|
| 276 |
# Save video
|
| 277 |
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
|
|
|
|
| 279 |
|
| 280 |
export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
|
| 281 |
|
| 282 |
+
return video_path, current_seed, f"🎬 Video generated! ({num_frames} frames)"
|
| 283 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
except Exception as e:
|
| 285 |
+
if TORCH_AVAILABLE:
|
| 286 |
+
torch.cuda.empty_cache()
|
| 287 |
+
gc.collect()
|
| 288 |
+
error_msg = str(e)[:200]
|
| 289 |
+
if "out of memory" in error_msg.lower():
|
| 290 |
+
return None, seed, "GPU memory exceeded. Try reducing duration and steps."
|
| 291 |
+
return None, seed, f"Error: {error_msg}"
|
| 292 |
|
| 293 |
# ===========================
|
| 294 |
+
# Simple CSS
|
| 295 |
# ===========================
|
| 296 |
|
| 297 |
css = """
|
| 298 |
.gradio-container {
|
| 299 |
+
max-width: 1200px;
|
| 300 |
+
margin: 0 auto;
|
|
|
|
| 301 |
}
|
| 302 |
.header-container {
|
| 303 |
background: linear-gradient(135deg, #ffd93d 0%, #ffb347 100%);
|
| 304 |
+
padding: 2rem;
|
| 305 |
+
border-radius: 12px;
|
| 306 |
+
margin-bottom: 2rem;
|
| 307 |
+
text-align: center;
|
| 308 |
}
|
| 309 |
.logo-text {
|
| 310 |
+
font-size: 2.5rem;
|
| 311 |
+
font-weight: bold;
|
| 312 |
color: #2d3436;
|
|
|
|
| 313 |
margin: 0;
|
|
|
|
| 314 |
}
|
| 315 |
.subtitle {
|
| 316 |
color: #2d3436;
|
| 317 |
+
font-size: 1rem;
|
|
|
|
| 318 |
margin-top: 0.5rem;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
}
|
| 320 |
"""
|
| 321 |
|
| 322 |
# ===========================
|
| 323 |
+
# Gradio Interface (Simplified)
|
| 324 |
# ===========================
|
| 325 |
|
| 326 |
+
def create_demo():
|
| 327 |
+
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
| 328 |
+
# Shared state
|
| 329 |
+
generated_image_state = gr.State(None)
|
| 330 |
+
|
| 331 |
gr.HTML("""
|
| 332 |
+
<div class="header-container">
|
| 333 |
+
<h1 class="logo-text">🍌 Nano Banana + Video</h1>
|
| 334 |
+
<p class="subtitle">AI-Powered Image Generation with Video Creation</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
</div>
|
| 336 |
""")
|
| 337 |
+
|
| 338 |
+
with gr.Tabs():
|
| 339 |
+
# Tab 1: Image Generation
|
| 340 |
+
with gr.TabItem("🎨 Step 1: Generate Image"):
|
| 341 |
+
with gr.Row():
|
| 342 |
+
with gr.Column():
|
|
|
|
|
|
|
|
|
|
| 343 |
style_prompt = gr.Textbox(
|
| 344 |
label="Style Description",
|
| 345 |
placeholder="Describe your style...",
|
| 346 |
lines=3,
|
| 347 |
+
value="A beautiful landscape in anime style"
|
| 348 |
)
|
| 349 |
|
| 350 |
+
image1 = gr.Image(
|
| 351 |
+
label="Reference Image (Optional)",
|
| 352 |
+
type="pil"
|
| 353 |
+
)
|
| 354 |
+
|
| 355 |
+
image2 = gr.Image(
|
| 356 |
+
label="Secondary Image (Optional)",
|
| 357 |
+
type="pil"
|
| 358 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 359 |
|
| 360 |
generate_img_btn = gr.Button(
|
| 361 |
"Generate Image ✨",
|
| 362 |
+
variant="primary"
|
|
|
|
| 363 |
)
|
| 364 |
|
| 365 |
+
with gr.Column():
|
| 366 |
output_image = gr.Image(
|
| 367 |
label="Generated Result",
|
| 368 |
+
type="pil"
|
|
|
|
|
|
|
| 369 |
)
|
| 370 |
|
| 371 |
img_status = gr.Textbox(
|
| 372 |
label="Status",
|
| 373 |
interactive=False,
|
| 374 |
+
value="Ready..."
|
|
|
|
|
|
|
| 375 |
)
|
| 376 |
|
| 377 |
send_to_video_btn = gr.Button(
|
| 378 |
"Send to Video Generation →",
|
| 379 |
variant="secondary",
|
|
|
|
| 380 |
visible=False
|
| 381 |
)
|
| 382 |
+
|
| 383 |
+
# Tab 2: Video Generation
|
| 384 |
+
with gr.TabItem("🎬 Step 2: Generate Video"):
|
|
|
|
|
|
|
|
|
|
| 385 |
with gr.Row():
|
| 386 |
with gr.Column():
|
| 387 |
video_input_image = gr.Image(
|
| 388 |
+
type="pil",
|
| 389 |
+
label="Input Image"
|
|
|
|
| 390 |
)
|
| 391 |
+
|
| 392 |
video_prompt = gr.Textbox(
|
| 393 |
+
label="Animation Prompt",
|
| 394 |
+
value=default_prompt_i2v
|
|
|
|
| 395 |
)
|
| 396 |
+
|
| 397 |
duration_input = gr.Slider(
|
| 398 |
+
minimum=0.5,
|
| 399 |
+
maximum=2.0,
|
| 400 |
+
step=0.5,
|
| 401 |
+
value=1.0,
|
| 402 |
+
label="Duration (seconds)"
|
|
|
|
| 403 |
)
|
| 404 |
|
| 405 |
+
steps_slider = gr.Slider(
|
| 406 |
+
minimum=1,
|
| 407 |
+
maximum=8,
|
| 408 |
+
step=1,
|
| 409 |
+
value=4,
|
| 410 |
+
label="Inference Steps"
|
| 411 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 412 |
|
| 413 |
generate_video_btn = gr.Button(
|
| 414 |
"Generate Video 🎬",
|
| 415 |
+
variant="primary"
|
|
|
|
| 416 |
)
|
| 417 |
|
| 418 |
with gr.Column():
|
| 419 |
video_output = gr.Video(
|
| 420 |
+
label="Generated Video",
|
| 421 |
autoplay=True
|
| 422 |
)
|
| 423 |
+
|
| 424 |
video_status = gr.Textbox(
|
| 425 |
label="Status",
|
| 426 |
interactive=False,
|
| 427 |
+
value="Ready..."
|
|
|
|
|
|
|
| 428 |
)
|
| 429 |
+
|
| 430 |
+
# Event Handlers
|
| 431 |
+
def on_image_generated(prompt, img1, img2):
|
| 432 |
+
img, status, state_img = process_images(prompt, img1, img2)
|
| 433 |
+
if img:
|
| 434 |
+
return img, status, state_img, gr.update(visible=True)
|
| 435 |
+
return img, status, state_img, gr.update(visible=False)
|
| 436 |
+
|
| 437 |
+
def send_image_to_video(img):
|
| 438 |
+
if img:
|
| 439 |
+
return img, "Image loaded!"
|
| 440 |
+
return None, "No image to send."
|
| 441 |
+
|
| 442 |
+
# Wire up events
|
| 443 |
+
generate_img_btn.click(
|
| 444 |
+
fn=on_image_generated,
|
| 445 |
+
inputs=[style_prompt, image1, image2],
|
| 446 |
+
outputs=[output_image, img_status, generated_image_state, send_to_video_btn]
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
send_to_video_btn.click(
|
| 450 |
+
fn=send_image_to_video,
|
| 451 |
+
inputs=[generated_image_state],
|
| 452 |
+
outputs=[video_input_image, video_status]
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
+
# Simplified video generation
|
| 456 |
+
def generate_video_wrapper(img, prompt, duration, steps):
|
| 457 |
+
if not TORCH_AVAILABLE:
|
| 458 |
+
return None, "Video generation requires PyTorch. Please install it first."
|
| 459 |
+
|
| 460 |
+
try:
|
| 461 |
+
video_path, seed, status = generate_video(
|
| 462 |
+
img, prompt, steps=steps, duration_seconds=duration
|
| 463 |
+
)
|
| 464 |
+
return video_path, status
|
| 465 |
+
except Exception as e:
|
| 466 |
+
return None, f"Error: {str(e)[:100]}"
|
| 467 |
+
|
| 468 |
+
generate_video_btn.click(
|
| 469 |
+
fn=generate_video_wrapper,
|
| 470 |
+
inputs=[video_input_image, video_prompt, duration_input, steps_slider],
|
| 471 |
+
outputs=[video_output, video_status]
|
| 472 |
+
)
|
| 473 |
+
|
| 474 |
+
return demo
|
| 475 |
+
|
| 476 |
+
# ===========================
|
| 477 |
+
# Main Launch
|
| 478 |
+
# ===========================
|
| 479 |
|
|
|
|
| 480 |
if __name__ == "__main__":
|
| 481 |
+
print("=" * 50)
|
| 482 |
+
print("Starting Nano Banana + Video Application")
|
| 483 |
+
print("=" * 50)
|
| 484 |
|
| 485 |
+
# Check environment
|
| 486 |
+
if not os.getenv('REPLICATE_API_TOKEN'):
|
| 487 |
+
print("Warning: REPLICATE_API_TOKEN not set. Image generation may not work.")
|
| 488 |
+
|
| 489 |
+
if not TORCH_AVAILABLE:
|
| 490 |
+
print("Warning: PyTorch not available. Video generation will be disabled.")
|
| 491 |
+
print("To enable video generation, install PyTorch: pip install torch")
|
| 492 |
+
|
| 493 |
+
try:
|
| 494 |
+
# Create and launch demo
|
| 495 |
+
demo = create_demo()
|
| 496 |
+
|
| 497 |
+
demo.launch(
|
| 498 |
+
share=False, # Set to True if you want a public link
|
| 499 |
+
server_name="0.0.0.0",
|
| 500 |
+
server_port=7860,
|
| 501 |
+
show_error=True,
|
| 502 |
+
debug=False # Set to True for debugging
|
| 503 |
+
)
|
| 504 |
+
except Exception as e:
|
| 505 |
+
print(f"Failed to launch application: {e}")
|
| 506 |
+
print("Please check your environment and dependencies.")
|