exaone-finetuning / app_simple.py
amis5895's picture
Update app.py with simple training simulation
fc9016a
#!/usr/bin/env python3
"""
๊ฐ„๋‹จํ•œ EXAONE Fine-tuning Space FastAPI ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜
"""
import os
import json
import subprocess
import asyncio
from pathlib import Path
from typing import Dict, Any
import logging
from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
import uvicorn
# ๋กœ๊น… ์„ค์ •
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI(
title="EXAONE Fine-tuning",
description="EXAONE 4.0 1.2B ๋ชจ๋ธ ํŒŒ์ธํŠœ๋‹ API",
version="1.0.0"
)
# ์ „์—ญ ๋ณ€์ˆ˜
training_status = {
"is_running": False,
"progress": 0,
"current_epoch": 0,
"total_epochs": 3,
"loss": 0.0,
"status": "idle"
}
class TrainingRequest(BaseModel):
model_name: str = "amis5895/exaone-1p2b-nutrition-kdri"
@app.get("/")
async def root():
"""๋ฃจํŠธ ์—”๋“œํฌ์ธํŠธ"""
return {
"message": "EXAONE Fine-tuning API",
"status": "running",
"version": "1.0.0"
}
@app.post("/start_training")
async def start_training(request: TrainingRequest, background_tasks: BackgroundTasks):
"""ํ•™์Šต ์‹œ์ž‘"""
global training_status
if training_status["is_running"]:
raise HTTPException(status_code=400, detail="Training is already running")
training_status.update({
"is_running": True,
"progress": 0,
"current_epoch": 0,
"status": "starting"
})
# ๋ฐฑ๊ทธ๋ผ์šด๋“œ์—์„œ ํ•™์Šต ์‹œ์ž‘
background_tasks.add_task(run_training_simple, request)
return {
"message": "Training started",
"status": "starting",
"model_name": request.model_name
}
async def run_training_simple(request: TrainingRequest):
"""๊ฐ„๋‹จํ•œ ํ•™์Šต ์‹คํ–‰ (์‹œ๋ฎฌ๋ ˆ์ด์…˜)"""
global training_status
try:
logger.info("Starting simple training process...")
training_status["status"] = "running"
# ๋ฐ์ดํ„ฐ ํŒŒ์ผ ํ™•์ธ
train_file = Path("/app/train.csv")
val_file = Path("/app/validation.csv")
if not train_file.exists():
logger.error(f"Training file not found: {train_file}")
training_status.update({
"is_running": False,
"status": "failed",
"error": "Training file not found"
})
return
if not val_file.exists():
logger.error(f"Validation file not found: {val_file}")
training_status.update({
"is_running": False,
"status": "failed",
"error": "Validation file not found"
})
return
logger.info("Data files found, starting training simulation...")
# ๊ฐ„๋‹จํ•œ ํ›ˆ๋ จ ์‹œ๋ฎฌ๋ ˆ์ด์…˜
for epoch in range(1, 4):
training_status["current_epoch"] = epoch
training_status["progress"] = (epoch / 3) * 100
training_status["loss"] = 2.5 - (epoch * 0.5) # ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์†์‹ค๊ฐ’
logger.info(f"Epoch {epoch}/3 - Loss: {training_status['loss']:.3f}")
await asyncio.sleep(5) # 5์ดˆ ๋Œ€๊ธฐ (์‹œ๋ฎฌ๋ ˆ์ด์…˜)
training_status.update({
"is_running": False,
"progress": 100,
"status": "completed"
})
logger.info("Training completed successfully!")
except Exception as e:
logger.error(f"Training error: {str(e)}")
training_status.update({
"is_running": False,
"status": "error",
"error": str(e)
})
@app.get("/status")
async def get_status():
"""ํ•™์Šต ์ƒํƒœ ์กฐํšŒ"""
return training_status
@app.get("/logs")
async def get_logs():
"""๋กœ๊ทธ ์กฐํšŒ"""
log_file = Path("/app/training.log")
if log_file.exists():
with open(log_file, "r", encoding="utf-8") as f:
logs = f.read()
return {"logs": logs}
else:
return {"logs": "No logs available"}
@app.get("/logs/stream")
async def stream_logs():
"""์‹ค์‹œ๊ฐ„ ๋กœ๊ทธ ์ŠคํŠธ๋ฆฌ๋ฐ"""
def generate_logs():
log_file = Path("/app/training.log")
if log_file.exists():
with open(log_file, "r", encoding="utf-8") as f:
for line in f:
yield f"data: {line}\\n\\n"
else:
yield "data: No logs available\\n\\n"
return StreamingResponse(generate_logs(), media_type="text/plain")
@app.post("/stop_training")
async def stop_training():
"""ํ•™์Šต ์ค‘์ง€"""
global training_status
if not training_status["is_running"]:
raise HTTPException(status_code=400, detail="No training is running")
training_status.update({
"is_running": False,
"status": "stopped"
})
return {"message": "Training stopped"}
@app.get("/health")
async def health_check():
"""ํ—ฌ์Šค ์ฒดํฌ"""
return {"status": "healthy", "timestamp": "2024-01-01T00:00:00Z"}
@app.get("/data_info")
async def get_data_info():
"""๋ฐ์ดํ„ฐ ์ •๋ณด ์กฐํšŒ"""
train_file = Path("/app/train.csv")
val_file = Path("/app/validation.csv")
info = {
"train_file_exists": train_file.exists(),
"validation_file_exists": val_file.exists(),
"train_file_size": train_file.stat().st_size if train_file.exists() else 0,
"validation_file_size": val_file.stat().st_size if val_file.exists() else 0
}
return info
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)