Spaces:
Paused
Paused
File size: 5,646 Bytes
fc9016a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
#!/usr/bin/env python3
"""
๊ฐ๋จํ EXAONE Fine-tuning Space FastAPI ์ ํ๋ฆฌ์ผ์ด์
"""
import os
import json
import subprocess
import asyncio
from pathlib import Path
from typing import Dict, Any
import logging
from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
import uvicorn
# ๋ก๊น
์ค์
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI(
title="EXAONE Fine-tuning",
description="EXAONE 4.0 1.2B ๋ชจ๋ธ ํ์ธํ๋ API",
version="1.0.0"
)
# ์ ์ญ ๋ณ์
training_status = {
"is_running": False,
"progress": 0,
"current_epoch": 0,
"total_epochs": 3,
"loss": 0.0,
"status": "idle"
}
class TrainingRequest(BaseModel):
model_name: str = "amis5895/exaone-1p2b-nutrition-kdri"
@app.get("/")
async def root():
"""๋ฃจํธ ์๋ํฌ์ธํธ"""
return {
"message": "EXAONE Fine-tuning API",
"status": "running",
"version": "1.0.0"
}
@app.post("/start_training")
async def start_training(request: TrainingRequest, background_tasks: BackgroundTasks):
"""ํ์ต ์์"""
global training_status
if training_status["is_running"]:
raise HTTPException(status_code=400, detail="Training is already running")
training_status.update({
"is_running": True,
"progress": 0,
"current_epoch": 0,
"status": "starting"
})
# ๋ฐฑ๊ทธ๋ผ์ด๋์์ ํ์ต ์์
background_tasks.add_task(run_training_simple, request)
return {
"message": "Training started",
"status": "starting",
"model_name": request.model_name
}
async def run_training_simple(request: TrainingRequest):
"""๊ฐ๋จํ ํ์ต ์คํ (์๋ฎฌ๋ ์ด์
)"""
global training_status
try:
logger.info("Starting simple training process...")
training_status["status"] = "running"
# ๋ฐ์ดํฐ ํ์ผ ํ์ธ
train_file = Path("/app/train.csv")
val_file = Path("/app/validation.csv")
if not train_file.exists():
logger.error(f"Training file not found: {train_file}")
training_status.update({
"is_running": False,
"status": "failed",
"error": "Training file not found"
})
return
if not val_file.exists():
logger.error(f"Validation file not found: {val_file}")
training_status.update({
"is_running": False,
"status": "failed",
"error": "Validation file not found"
})
return
logger.info("Data files found, starting training simulation...")
# ๊ฐ๋จํ ํ๋ จ ์๋ฎฌ๋ ์ด์
for epoch in range(1, 4):
training_status["current_epoch"] = epoch
training_status["progress"] = (epoch / 3) * 100
training_status["loss"] = 2.5 - (epoch * 0.5) # ์๋ฎฌ๋ ์ด์
์์ค๊ฐ
logger.info(f"Epoch {epoch}/3 - Loss: {training_status['loss']:.3f}")
await asyncio.sleep(5) # 5์ด ๋๊ธฐ (์๋ฎฌ๋ ์ด์
)
training_status.update({
"is_running": False,
"progress": 100,
"status": "completed"
})
logger.info("Training completed successfully!")
except Exception as e:
logger.error(f"Training error: {str(e)}")
training_status.update({
"is_running": False,
"status": "error",
"error": str(e)
})
@app.get("/status")
async def get_status():
"""ํ์ต ์ํ ์กฐํ"""
return training_status
@app.get("/logs")
async def get_logs():
"""๋ก๊ทธ ์กฐํ"""
log_file = Path("/app/training.log")
if log_file.exists():
with open(log_file, "r", encoding="utf-8") as f:
logs = f.read()
return {"logs": logs}
else:
return {"logs": "No logs available"}
@app.get("/logs/stream")
async def stream_logs():
"""์ค์๊ฐ ๋ก๊ทธ ์คํธ๋ฆฌ๋ฐ"""
def generate_logs():
log_file = Path("/app/training.log")
if log_file.exists():
with open(log_file, "r", encoding="utf-8") as f:
for line in f:
yield f"data: {line}\\n\\n"
else:
yield "data: No logs available\\n\\n"
return StreamingResponse(generate_logs(), media_type="text/plain")
@app.post("/stop_training")
async def stop_training():
"""ํ์ต ์ค์ง"""
global training_status
if not training_status["is_running"]:
raise HTTPException(status_code=400, detail="No training is running")
training_status.update({
"is_running": False,
"status": "stopped"
})
return {"message": "Training stopped"}
@app.get("/health")
async def health_check():
"""ํฌ์ค ์ฒดํฌ"""
return {"status": "healthy", "timestamp": "2024-01-01T00:00:00Z"}
@app.get("/data_info")
async def get_data_info():
"""๋ฐ์ดํฐ ์ ๋ณด ์กฐํ"""
train_file = Path("/app/train.csv")
val_file = Path("/app/validation.csv")
info = {
"train_file_exists": train_file.exists(),
"validation_file_exists": val_file.exists(),
"train_file_size": train_file.stat().st_size if train_file.exists() else 0,
"validation_file_size": val_file.stat().st_size if val_file.exists() else 0
}
return info
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)
|