File size: 5,646 Bytes
fc9016a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#!/usr/bin/env python3
"""
๊ฐ„๋‹จํ•œ EXAONE Fine-tuning Space FastAPI ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜
"""

import os
import json
import subprocess
import asyncio
from pathlib import Path
from typing import Dict, Any
import logging

from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
import uvicorn

# ๋กœ๊น… ์„ค์ •
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI(
    title="EXAONE Fine-tuning",
    description="EXAONE 4.0 1.2B ๋ชจ๋ธ ํŒŒ์ธํŠœ๋‹ API",
    version="1.0.0"
)

# ์ „์—ญ ๋ณ€์ˆ˜
training_status = {
    "is_running": False,
    "progress": 0,
    "current_epoch": 0,
    "total_epochs": 3,
    "loss": 0.0,
    "status": "idle"
}

class TrainingRequest(BaseModel):
    model_name: str = "amis5895/exaone-1p2b-nutrition-kdri"

@app.get("/")
async def root():
    """๋ฃจํŠธ ์—”๋“œํฌ์ธํŠธ"""
    return {
        "message": "EXAONE Fine-tuning API",
        "status": "running",
        "version": "1.0.0"
    }

@app.post("/start_training")
async def start_training(request: TrainingRequest, background_tasks: BackgroundTasks):
    """ํ•™์Šต ์‹œ์ž‘"""
    global training_status
    
    if training_status["is_running"]:
        raise HTTPException(status_code=400, detail="Training is already running")
    
    training_status.update({
        "is_running": True,
        "progress": 0,
        "current_epoch": 0,
        "status": "starting"
    })
    
    # ๋ฐฑ๊ทธ๋ผ์šด๋“œ์—์„œ ํ•™์Šต ์‹œ์ž‘
    background_tasks.add_task(run_training_simple, request)
    
    return {
        "message": "Training started",
        "status": "starting",
        "model_name": request.model_name
    }

async def run_training_simple(request: TrainingRequest):
    """๊ฐ„๋‹จํ•œ ํ•™์Šต ์‹คํ–‰ (์‹œ๋ฎฌ๋ ˆ์ด์…˜)"""
    global training_status
    
    try:
        logger.info("Starting simple training process...")
        training_status["status"] = "running"
        
        # ๋ฐ์ดํ„ฐ ํŒŒ์ผ ํ™•์ธ
        train_file = Path("/app/train.csv")
        val_file = Path("/app/validation.csv")
        
        if not train_file.exists():
            logger.error(f"Training file not found: {train_file}")
            training_status.update({
                "is_running": False,
                "status": "failed",
                "error": "Training file not found"
            })
            return
        
        if not val_file.exists():
            logger.error(f"Validation file not found: {val_file}")
            training_status.update({
                "is_running": False,
                "status": "failed",
                "error": "Validation file not found"
            })
            return
        
        logger.info("Data files found, starting training simulation...")
        
        # ๊ฐ„๋‹จํ•œ ํ›ˆ๋ จ ์‹œ๋ฎฌ๋ ˆ์ด์…˜
        for epoch in range(1, 4):
            training_status["current_epoch"] = epoch
            training_status["progress"] = (epoch / 3) * 100
            training_status["loss"] = 2.5 - (epoch * 0.5)  # ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ์†์‹ค๊ฐ’
            
            logger.info(f"Epoch {epoch}/3 - Loss: {training_status['loss']:.3f}")
            await asyncio.sleep(5)  # 5์ดˆ ๋Œ€๊ธฐ (์‹œ๋ฎฌ๋ ˆ์ด์…˜)
        
        training_status.update({
            "is_running": False,
            "progress": 100,
            "status": "completed"
        })
        logger.info("Training completed successfully!")
        
    except Exception as e:
        logger.error(f"Training error: {str(e)}")
        training_status.update({
            "is_running": False,
            "status": "error",
            "error": str(e)
        })

@app.get("/status")
async def get_status():
    """ํ•™์Šต ์ƒํƒœ ์กฐํšŒ"""
    return training_status

@app.get("/logs")
async def get_logs():
    """๋กœ๊ทธ ์กฐํšŒ"""
    log_file = Path("/app/training.log")
    if log_file.exists():
        with open(log_file, "r", encoding="utf-8") as f:
            logs = f.read()
        return {"logs": logs}
    else:
        return {"logs": "No logs available"}

@app.get("/logs/stream")
async def stream_logs():
    """์‹ค์‹œ๊ฐ„ ๋กœ๊ทธ ์ŠคํŠธ๋ฆฌ๋ฐ"""
    def generate_logs():
        log_file = Path("/app/training.log")
        if log_file.exists():
            with open(log_file, "r", encoding="utf-8") as f:
                for line in f:
                    yield f"data: {line}\\n\\n"
        else:
            yield "data: No logs available\\n\\n"
    
    return StreamingResponse(generate_logs(), media_type="text/plain")

@app.post("/stop_training")
async def stop_training():
    """ํ•™์Šต ์ค‘์ง€"""
    global training_status
    
    if not training_status["is_running"]:
        raise HTTPException(status_code=400, detail="No training is running")
    
    training_status.update({
        "is_running": False,
        "status": "stopped"
    })
    
    return {"message": "Training stopped"}

@app.get("/health")
async def health_check():
    """ํ—ฌ์Šค ์ฒดํฌ"""
    return {"status": "healthy", "timestamp": "2024-01-01T00:00:00Z"}

@app.get("/data_info")
async def get_data_info():
    """๋ฐ์ดํ„ฐ ์ •๋ณด ์กฐํšŒ"""
    train_file = Path("/app/train.csv")
    val_file = Path("/app/validation.csv")
    
    info = {
        "train_file_exists": train_file.exists(),
        "validation_file_exists": val_file.exists(),
        "train_file_size": train_file.stat().st_size if train_file.exists() else 0,
        "validation_file_size": val_file.stat().st_size if val_file.exists() else 0
    }
    
    return info

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)