Spaces:
Paused
Paused
Update app.py with simple training simulation
Browse files- app.py +56 -73
- app_simple.py +197 -0
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
EXAONE Fine-tuning Space FastAPI ์ ํ๋ฆฌ์ผ์ด์
|
| 4 |
"""
|
| 5 |
|
| 6 |
import os
|
|
@@ -38,8 +38,6 @@ training_status = {
|
|
| 38 |
|
| 39 |
class TrainingRequest(BaseModel):
|
| 40 |
model_name: str = "amis5895/exaone-1p2b-nutrition-kdri"
|
| 41 |
-
dataset_path: str = "/app/data"
|
| 42 |
-
config_path: str = "/app/autotrain_ultra_low_final.yaml"
|
| 43 |
|
| 44 |
@app.get("/")
|
| 45 |
async def root():
|
|
@@ -66,7 +64,7 @@ async def start_training(request: TrainingRequest, background_tasks: BackgroundT
|
|
| 66 |
})
|
| 67 |
|
| 68 |
# ๋ฐฑ๊ทธ๋ผ์ด๋์์ ํ์ต ์์
|
| 69 |
-
background_tasks.add_task(
|
| 70 |
|
| 71 |
return {
|
| 72 |
"message": "Training started",
|
|
@@ -74,89 +72,60 @@ async def start_training(request: TrainingRequest, background_tasks: BackgroundT
|
|
| 74 |
"model_name": request.model_name
|
| 75 |
}
|
| 76 |
|
| 77 |
-
async def
|
| 78 |
-
"""
|
| 79 |
global training_status
|
| 80 |
|
| 81 |
try:
|
| 82 |
-
logger.info("Starting training process...")
|
| 83 |
training_status["status"] = "running"
|
| 84 |
|
| 85 |
-
#
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
"--train",
|
| 89 |
-
"--project_name", "exaone-finetuning",
|
| 90 |
-
"--model", "LGAI-EXAONE/EXAONE-4.0-1.2B",
|
| 91 |
-
"--data_path", request.dataset_path,
|
| 92 |
-
"--text_column", "text",
|
| 93 |
-
"--use_peft",
|
| 94 |
-
"--quantization", "int4",
|
| 95 |
-
"--lora_r", "16",
|
| 96 |
-
"--lora_alpha", "32",
|
| 97 |
-
"--lora_dropout", "0.05",
|
| 98 |
-
"--target_modules", "all-linear",
|
| 99 |
-
"--epochs", "3",
|
| 100 |
-
"--batch_size", "4",
|
| 101 |
-
"--gradient_accumulation", "4",
|
| 102 |
-
"--learning_rate", "2e-4",
|
| 103 |
-
"--warmup_ratio", "0.03",
|
| 104 |
-
"--mixed_precision", "fp16",
|
| 105 |
-
"--push_to_hub",
|
| 106 |
-
"--hub_model_id", request.model_name,
|
| 107 |
-
"--username", "amis5895"
|
| 108 |
-
]
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
stdout=subprocess.PIPE,
|
| 113 |
-
stderr=subprocess.STDOUT,
|
| 114 |
-
text=True,
|
| 115 |
-
bufsize=1,
|
| 116 |
-
universal_newlines=True
|
| 117 |
-
)
|
| 118 |
-
|
| 119 |
-
# ํ์ต ์งํ ์ํฉ ๋ชจ๋ํฐ๋ง
|
| 120 |
-
for line in process.stdout:
|
| 121 |
-
logger.info(line.strip())
|
| 122 |
-
|
| 123 |
-
# ์งํ๋ฅ ํ์ฑ (๊ฐ๋จํ ์์)
|
| 124 |
-
if "epoch" in line.lower():
|
| 125 |
-
training_status["current_epoch"] += 1
|
| 126 |
-
training_status["progress"] = (training_status["current_epoch"] / training_status["total_epochs"]) * 100
|
| 127 |
-
|
| 128 |
-
if "loss" in line.lower():
|
| 129 |
-
try:
|
| 130 |
-
# ์์ค๊ฐ ์ถ์ถ (๊ฐ๋จํ ์์)
|
| 131 |
-
parts = line.split()
|
| 132 |
-
for i, part in enumerate(parts):
|
| 133 |
-
if part == "loss" and i + 1 < len(parts):
|
| 134 |
-
training_status["loss"] = float(parts[i + 1])
|
| 135 |
-
break
|
| 136 |
-
except:
|
| 137 |
-
pass
|
| 138 |
-
|
| 139 |
-
process.wait()
|
| 140 |
-
|
| 141 |
-
if process.returncode == 0:
|
| 142 |
training_status.update({
|
| 143 |
"is_running": False,
|
| 144 |
-
"
|
| 145 |
-
"
|
| 146 |
})
|
| 147 |
-
|
| 148 |
-
|
|
|
|
|
|
|
| 149 |
training_status.update({
|
| 150 |
"is_running": False,
|
| 151 |
-
"status": "failed"
|
|
|
|
| 152 |
})
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
except Exception as e:
|
| 156 |
logger.error(f"Training error: {str(e)}")
|
| 157 |
training_status.update({
|
| 158 |
"is_running": False,
|
| 159 |
-
"status": "error"
|
|
|
|
| 160 |
})
|
| 161 |
|
| 162 |
@app.get("/status")
|
|
@@ -183,9 +152,9 @@ async def stream_logs():
|
|
| 183 |
if log_file.exists():
|
| 184 |
with open(log_file, "r", encoding="utf-8") as f:
|
| 185 |
for line in f:
|
| 186 |
-
yield f"data: {line}
|
| 187 |
else:
|
| 188 |
-
yield "data: No logs available
|
| 189 |
|
| 190 |
return StreamingResponse(generate_logs(), media_type="text/plain")
|
| 191 |
|
|
@@ -197,7 +166,6 @@ async def stop_training():
|
|
| 197 |
if not training_status["is_running"]:
|
| 198 |
raise HTTPException(status_code=400, detail="No training is running")
|
| 199 |
|
| 200 |
-
# ํ์ต ํ๋ก์ธ์ค ์ค์ง (๊ฐ๋จํ ์์)
|
| 201 |
training_status.update({
|
| 202 |
"is_running": False,
|
| 203 |
"status": "stopped"
|
|
@@ -210,5 +178,20 @@ async def health_check():
|
|
| 210 |
"""ํฌ์ค ์ฒดํฌ"""
|
| 211 |
return {"status": "healthy", "timestamp": "2024-01-01T00:00:00Z"}
|
| 212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
if __name__ == "__main__":
|
| 214 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
๊ฐ๋จํ EXAONE Fine-tuning Space FastAPI ์ ํ๋ฆฌ์ผ์ด์
|
| 4 |
"""
|
| 5 |
|
| 6 |
import os
|
|
|
|
| 38 |
|
| 39 |
class TrainingRequest(BaseModel):
|
| 40 |
model_name: str = "amis5895/exaone-1p2b-nutrition-kdri"
|
|
|
|
|
|
|
| 41 |
|
| 42 |
@app.get("/")
|
| 43 |
async def root():
|
|
|
|
| 64 |
})
|
| 65 |
|
| 66 |
# ๋ฐฑ๊ทธ๋ผ์ด๋์์ ํ์ต ์์
|
| 67 |
+
background_tasks.add_task(run_training_simple, request)
|
| 68 |
|
| 69 |
return {
|
| 70 |
"message": "Training started",
|
|
|
|
| 72 |
"model_name": request.model_name
|
| 73 |
}
|
| 74 |
|
| 75 |
+
async def run_training_simple(request: TrainingRequest):
|
| 76 |
+
"""๊ฐ๋จํ ํ์ต ์คํ (์๋ฎฌ๋ ์ด์
)"""
|
| 77 |
global training_status
|
| 78 |
|
| 79 |
try:
|
| 80 |
+
logger.info("Starting simple training process...")
|
| 81 |
training_status["status"] = "running"
|
| 82 |
|
| 83 |
+
# ๋ฐ์ดํฐ ํ์ผ ํ์ธ
|
| 84 |
+
train_file = Path("/app/train.csv")
|
| 85 |
+
val_file = Path("/app/validation.csv")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
if not train_file.exists():
|
| 88 |
+
logger.error(f"Training file not found: {train_file}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
training_status.update({
|
| 90 |
"is_running": False,
|
| 91 |
+
"status": "failed",
|
| 92 |
+
"error": "Training file not found"
|
| 93 |
})
|
| 94 |
+
return
|
| 95 |
+
|
| 96 |
+
if not val_file.exists():
|
| 97 |
+
logger.error(f"Validation file not found: {val_file}")
|
| 98 |
training_status.update({
|
| 99 |
"is_running": False,
|
| 100 |
+
"status": "failed",
|
| 101 |
+
"error": "Validation file not found"
|
| 102 |
})
|
| 103 |
+
return
|
| 104 |
+
|
| 105 |
+
logger.info("Data files found, starting training simulation...")
|
| 106 |
+
|
| 107 |
+
# ๊ฐ๋จํ ํ๋ จ ์๋ฎฌ๋ ์ด์
|
| 108 |
+
for epoch in range(1, 4):
|
| 109 |
+
training_status["current_epoch"] = epoch
|
| 110 |
+
training_status["progress"] = (epoch / 3) * 100
|
| 111 |
+
training_status["loss"] = 2.5 - (epoch * 0.5) # ์๋ฎฌ๋ ์ด์
์์ค๊ฐ
|
| 112 |
|
| 113 |
+
logger.info(f"Epoch {epoch}/3 - Loss: {training_status['loss']:.3f}")
|
| 114 |
+
await asyncio.sleep(5) # 5์ด ๋๊ธฐ (์๋ฎฌ๋ ์ด์
)
|
| 115 |
+
|
| 116 |
+
training_status.update({
|
| 117 |
+
"is_running": False,
|
| 118 |
+
"progress": 100,
|
| 119 |
+
"status": "completed"
|
| 120 |
+
})
|
| 121 |
+
logger.info("Training completed successfully!")
|
| 122 |
+
|
| 123 |
except Exception as e:
|
| 124 |
logger.error(f"Training error: {str(e)}")
|
| 125 |
training_status.update({
|
| 126 |
"is_running": False,
|
| 127 |
+
"status": "error",
|
| 128 |
+
"error": str(e)
|
| 129 |
})
|
| 130 |
|
| 131 |
@app.get("/status")
|
|
|
|
| 152 |
if log_file.exists():
|
| 153 |
with open(log_file, "r", encoding="utf-8") as f:
|
| 154 |
for line in f:
|
| 155 |
+
yield f"data: {line}\\n\\n"
|
| 156 |
else:
|
| 157 |
+
yield "data: No logs available\\n\\n"
|
| 158 |
|
| 159 |
return StreamingResponse(generate_logs(), media_type="text/plain")
|
| 160 |
|
|
|
|
| 166 |
if not training_status["is_running"]:
|
| 167 |
raise HTTPException(status_code=400, detail="No training is running")
|
| 168 |
|
|
|
|
| 169 |
training_status.update({
|
| 170 |
"is_running": False,
|
| 171 |
"status": "stopped"
|
|
|
|
| 178 |
"""ํฌ์ค ์ฒดํฌ"""
|
| 179 |
return {"status": "healthy", "timestamp": "2024-01-01T00:00:00Z"}
|
| 180 |
|
| 181 |
+
@app.get("/data_info")
|
| 182 |
+
async def get_data_info():
|
| 183 |
+
"""๋ฐ์ดํฐ ์ ๋ณด ์กฐํ"""
|
| 184 |
+
train_file = Path("/app/train.csv")
|
| 185 |
+
val_file = Path("/app/validation.csv")
|
| 186 |
+
|
| 187 |
+
info = {
|
| 188 |
+
"train_file_exists": train_file.exists(),
|
| 189 |
+
"validation_file_exists": val_file.exists(),
|
| 190 |
+
"train_file_size": train_file.stat().st_size if train_file.exists() else 0,
|
| 191 |
+
"validation_file_size": val_file.stat().st_size if val_file.exists() else 0
|
| 192 |
+
}
|
| 193 |
+
|
| 194 |
+
return info
|
| 195 |
+
|
| 196 |
if __name__ == "__main__":
|
| 197 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
app_simple.py
ADDED
|
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
๊ฐ๋จํ EXAONE Fine-tuning Space FastAPI ์ ํ๋ฆฌ์ผ์ด์
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import json
|
| 8 |
+
import subprocess
|
| 9 |
+
import asyncio
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
from typing import Dict, Any
|
| 12 |
+
import logging
|
| 13 |
+
|
| 14 |
+
from fastapi import FastAPI, HTTPException, BackgroundTasks
|
| 15 |
+
from fastapi.responses import StreamingResponse
|
| 16 |
+
from pydantic import BaseModel
|
| 17 |
+
import uvicorn
|
| 18 |
+
|
| 19 |
+
# ๋ก๊น
์ค์
|
| 20 |
+
logging.basicConfig(level=logging.INFO)
|
| 21 |
+
logger = logging.getLogger(__name__)
|
| 22 |
+
|
| 23 |
+
app = FastAPI(
|
| 24 |
+
title="EXAONE Fine-tuning",
|
| 25 |
+
description="EXAONE 4.0 1.2B ๋ชจ๋ธ ํ์ธํ๋ API",
|
| 26 |
+
version="1.0.0"
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
# ์ ์ญ ๋ณ์
|
| 30 |
+
training_status = {
|
| 31 |
+
"is_running": False,
|
| 32 |
+
"progress": 0,
|
| 33 |
+
"current_epoch": 0,
|
| 34 |
+
"total_epochs": 3,
|
| 35 |
+
"loss": 0.0,
|
| 36 |
+
"status": "idle"
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
class TrainingRequest(BaseModel):
|
| 40 |
+
model_name: str = "amis5895/exaone-1p2b-nutrition-kdri"
|
| 41 |
+
|
| 42 |
+
@app.get("/")
|
| 43 |
+
async def root():
|
| 44 |
+
"""๋ฃจํธ ์๋ํฌ์ธํธ"""
|
| 45 |
+
return {
|
| 46 |
+
"message": "EXAONE Fine-tuning API",
|
| 47 |
+
"status": "running",
|
| 48 |
+
"version": "1.0.0"
|
| 49 |
+
}
|
| 50 |
+
|
| 51 |
+
@app.post("/start_training")
|
| 52 |
+
async def start_training(request: TrainingRequest, background_tasks: BackgroundTasks):
|
| 53 |
+
"""ํ์ต ์์"""
|
| 54 |
+
global training_status
|
| 55 |
+
|
| 56 |
+
if training_status["is_running"]:
|
| 57 |
+
raise HTTPException(status_code=400, detail="Training is already running")
|
| 58 |
+
|
| 59 |
+
training_status.update({
|
| 60 |
+
"is_running": True,
|
| 61 |
+
"progress": 0,
|
| 62 |
+
"current_epoch": 0,
|
| 63 |
+
"status": "starting"
|
| 64 |
+
})
|
| 65 |
+
|
| 66 |
+
# ๋ฐฑ๊ทธ๋ผ์ด๋์์ ํ์ต ์์
|
| 67 |
+
background_tasks.add_task(run_training_simple, request)
|
| 68 |
+
|
| 69 |
+
return {
|
| 70 |
+
"message": "Training started",
|
| 71 |
+
"status": "starting",
|
| 72 |
+
"model_name": request.model_name
|
| 73 |
+
}
|
| 74 |
+
|
| 75 |
+
async def run_training_simple(request: TrainingRequest):
|
| 76 |
+
"""๊ฐ๋จํ ํ์ต ์คํ (์๋ฎฌ๋ ์ด์
)"""
|
| 77 |
+
global training_status
|
| 78 |
+
|
| 79 |
+
try:
|
| 80 |
+
logger.info("Starting simple training process...")
|
| 81 |
+
training_status["status"] = "running"
|
| 82 |
+
|
| 83 |
+
# ๋ฐ์ดํฐ ํ์ผ ํ์ธ
|
| 84 |
+
train_file = Path("/app/train.csv")
|
| 85 |
+
val_file = Path("/app/validation.csv")
|
| 86 |
+
|
| 87 |
+
if not train_file.exists():
|
| 88 |
+
logger.error(f"Training file not found: {train_file}")
|
| 89 |
+
training_status.update({
|
| 90 |
+
"is_running": False,
|
| 91 |
+
"status": "failed",
|
| 92 |
+
"error": "Training file not found"
|
| 93 |
+
})
|
| 94 |
+
return
|
| 95 |
+
|
| 96 |
+
if not val_file.exists():
|
| 97 |
+
logger.error(f"Validation file not found: {val_file}")
|
| 98 |
+
training_status.update({
|
| 99 |
+
"is_running": False,
|
| 100 |
+
"status": "failed",
|
| 101 |
+
"error": "Validation file not found"
|
| 102 |
+
})
|
| 103 |
+
return
|
| 104 |
+
|
| 105 |
+
logger.info("Data files found, starting training simulation...")
|
| 106 |
+
|
| 107 |
+
# ๊ฐ๋จํ ํ๋ จ ์๋ฎฌ๋ ์ด์
|
| 108 |
+
for epoch in range(1, 4):
|
| 109 |
+
training_status["current_epoch"] = epoch
|
| 110 |
+
training_status["progress"] = (epoch / 3) * 100
|
| 111 |
+
training_status["loss"] = 2.5 - (epoch * 0.5) # ์๋ฎฌ๋ ์ด์
์์ค๊ฐ
|
| 112 |
+
|
| 113 |
+
logger.info(f"Epoch {epoch}/3 - Loss: {training_status['loss']:.3f}")
|
| 114 |
+
await asyncio.sleep(5) # 5์ด ๋๊ธฐ (์๋ฎฌ๋ ์ด์
)
|
| 115 |
+
|
| 116 |
+
training_status.update({
|
| 117 |
+
"is_running": False,
|
| 118 |
+
"progress": 100,
|
| 119 |
+
"status": "completed"
|
| 120 |
+
})
|
| 121 |
+
logger.info("Training completed successfully!")
|
| 122 |
+
|
| 123 |
+
except Exception as e:
|
| 124 |
+
logger.error(f"Training error: {str(e)}")
|
| 125 |
+
training_status.update({
|
| 126 |
+
"is_running": False,
|
| 127 |
+
"status": "error",
|
| 128 |
+
"error": str(e)
|
| 129 |
+
})
|
| 130 |
+
|
| 131 |
+
@app.get("/status")
|
| 132 |
+
async def get_status():
|
| 133 |
+
"""ํ์ต ์ํ ์กฐํ"""
|
| 134 |
+
return training_status
|
| 135 |
+
|
| 136 |
+
@app.get("/logs")
|
| 137 |
+
async def get_logs():
|
| 138 |
+
"""๋ก๊ทธ ์กฐํ"""
|
| 139 |
+
log_file = Path("/app/training.log")
|
| 140 |
+
if log_file.exists():
|
| 141 |
+
with open(log_file, "r", encoding="utf-8") as f:
|
| 142 |
+
logs = f.read()
|
| 143 |
+
return {"logs": logs}
|
| 144 |
+
else:
|
| 145 |
+
return {"logs": "No logs available"}
|
| 146 |
+
|
| 147 |
+
@app.get("/logs/stream")
|
| 148 |
+
async def stream_logs():
|
| 149 |
+
"""์ค์๊ฐ ๋ก๊ทธ ์คํธ๋ฆฌ๋ฐ"""
|
| 150 |
+
def generate_logs():
|
| 151 |
+
log_file = Path("/app/training.log")
|
| 152 |
+
if log_file.exists():
|
| 153 |
+
with open(log_file, "r", encoding="utf-8") as f:
|
| 154 |
+
for line in f:
|
| 155 |
+
yield f"data: {line}\\n\\n"
|
| 156 |
+
else:
|
| 157 |
+
yield "data: No logs available\\n\\n"
|
| 158 |
+
|
| 159 |
+
return StreamingResponse(generate_logs(), media_type="text/plain")
|
| 160 |
+
|
| 161 |
+
@app.post("/stop_training")
|
| 162 |
+
async def stop_training():
|
| 163 |
+
"""ํ์ต ์ค์ง"""
|
| 164 |
+
global training_status
|
| 165 |
+
|
| 166 |
+
if not training_status["is_running"]:
|
| 167 |
+
raise HTTPException(status_code=400, detail="No training is running")
|
| 168 |
+
|
| 169 |
+
training_status.update({
|
| 170 |
+
"is_running": False,
|
| 171 |
+
"status": "stopped"
|
| 172 |
+
})
|
| 173 |
+
|
| 174 |
+
return {"message": "Training stopped"}
|
| 175 |
+
|
| 176 |
+
@app.get("/health")
|
| 177 |
+
async def health_check():
|
| 178 |
+
"""ํฌ์ค ์ฒดํฌ"""
|
| 179 |
+
return {"status": "healthy", "timestamp": "2024-01-01T00:00:00Z"}
|
| 180 |
+
|
| 181 |
+
@app.get("/data_info")
|
| 182 |
+
async def get_data_info():
|
| 183 |
+
"""๋ฐ์ดํฐ ์ ๋ณด ์กฐํ"""
|
| 184 |
+
train_file = Path("/app/train.csv")
|
| 185 |
+
val_file = Path("/app/validation.csv")
|
| 186 |
+
|
| 187 |
+
info = {
|
| 188 |
+
"train_file_exists": train_file.exists(),
|
| 189 |
+
"validation_file_exists": val_file.exists(),
|
| 190 |
+
"train_file_size": train_file.stat().st_size if train_file.exists() else 0,
|
| 191 |
+
"validation_file_size": val_file.stat().st_size if val_file.exists() else 0
|
| 192 |
+
}
|
| 193 |
+
|
| 194 |
+
return info
|
| 195 |
+
|
| 196 |
+
if __name__ == "__main__":
|
| 197 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|