exaone-finetuning / app_corrected_autotrain.py
amis5895's picture
Fix AutoTrain command arguments - use correct format
6dfd72e
#!/usr/bin/env python3
"""
์˜ฌ๋ฐ”๋ฅธ AutoTrain ๋ช…๋ น์–ด๋ฅผ ์‚ฌ์šฉํ•œ EXAONE Fine-tuning Space FastAPI ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜
"""
import os
import json
import subprocess
import asyncio
from pathlib import Path
from typing import Dict, Any
import logging
from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
import uvicorn
# ๋กœ๊น… ์„ค์ •
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = FastAPI(
title="EXAONE Fine-tuning",
description="EXAONE 4.0 1.2B ๋ชจ๋ธ ํŒŒ์ธํŠœ๋‹ API",
version="1.0.0"
)
# ์ „์—ญ ๋ณ€์ˆ˜
training_status = {
"is_running": False,
"progress": 0,
"current_epoch": 0,
"total_epochs": 3,
"loss": 0.0,
"status": "idle",
"log_file": "/tmp/training.log"
}
class TrainingRequest(BaseModel):
model_name: str = "amis5895/exaone-1p2b-nutrition-kdri"
@app.get("/")
async def root():
"""๋ฃจํŠธ ์—”๋“œํฌ์ธํŠธ"""
return {
"message": "EXAONE Fine-tuning API",
"status": "running",
"version": "1.0.0"
}
@app.post("/start_training")
async def start_training(request: TrainingRequest, background_tasks: BackgroundTasks):
"""ํ•™์Šต ์‹œ์ž‘"""
global training_status
if training_status["is_running"]:
raise HTTPException(status_code=400, detail="Training is already running")
training_status.update({
"is_running": True,
"progress": 0,
"current_epoch": 0,
"status": "starting"
})
# ๋ฐฑ๊ทธ๋ผ์šด๋“œ์—์„œ ํ•™์Šต ์‹œ์ž‘
background_tasks.add_task(run_corrected_training, request)
return {
"message": "Training started",
"status": "starting",
"model_name": request.model_name
}
async def run_corrected_training(request: TrainingRequest):
"""์ˆ˜์ •๋œ AutoTrain์„ ์‚ฌ์šฉํ•œ ํ•™์Šต ์‹คํ–‰"""
global training_status
try:
logger.info("Starting corrected AutoTrain training process...")
training_status["status"] = "running"
# ๋ฐ์ดํ„ฐ ํŒŒ์ผ ํ™•์ธ
train_file = Path("/app/train.csv")
val_file = Path("/app/validation.csv")
config_file = Path("/app/autotrain_ultra_low_final.yaml")
if not train_file.exists():
logger.error(f"Training file not found: {train_file}")
training_status.update({
"is_running": False,
"status": "failed",
"error": "Training file not found"
})
return
if not val_file.exists():
logger.error(f"Validation file not found: {val_file}")
training_status.update({
"is_running": False,
"status": "failed",
"error": "Validation file not found"
})
return
if not config_file.exists():
logger.error(f"Config file not found: {config_file}")
training_status.update({
"is_running": False,
"status": "failed",
"error": "Config file not found"
})
return
logger.info("All files found, starting corrected AutoTrain training...")
# ๋กœ๊ทธ ํŒŒ์ผ ์ดˆ๊ธฐํ™”
log_file = Path(training_status["log_file"])
try:
log_file.write_text("Starting corrected AutoTrain training...\n", encoding="utf-8")
except Exception as e:
logger.warning(f"Could not write to log file: {e}")
training_status["log_content"] = "Starting corrected AutoTrain training...\n"
# ํ™˜๊ฒฝ๋ณ€์ˆ˜ ์„ค์ •
env = os.environ.copy()
env["TRANSFORMERS_CACHE"] = "/tmp/huggingface_cache"
env["HF_HOME"] = "/tmp/huggingface"
env["OMP_NUM_THREADS"] = "1"
# ์ˆ˜์ •๋œ AutoTrain ๋ช…๋ น์–ด (์˜ฌ๋ฐ”๋ฅธ ํ˜•์‹ ์‚ฌ์šฉ)
cmd = [
"autotrain", "llm",
"--train",
"--project_name", "exaone-finetuning",
"--model", "LGAI-EXAONE/EXAONE-4.0-1.2B",
"--data_path", "/app",
"--text_column", "text",
"--use-peft", # --use_peft ๋Œ€์‹  --use-peft
"--quantization", "int4",
"--lora-r", "16", # --lora_r ๋Œ€์‹  --lora-r
"--lora-alpha", "32", # --lora_alpha ๋Œ€์‹  --lora-alpha
"--lora-dropout", "0.05", # --lora_dropout ๋Œ€์‹  --lora-dropout
"--target-modules", "all-linear", # --target_modules ๋Œ€์‹  --target-modules
"--epochs", "3",
"--batch-size", "4", # --batch_size ๋Œ€์‹  --batch-size
"--gradient-accumulation", "4", # --gradient_accumulation ๋Œ€์‹  --gradient-accumulation
"--learning-rate", "2e-4", # --learning_rate ๋Œ€์‹  --learning-rate
"--warmup-ratio", "0.03", # --warmup_ratio ๋Œ€์‹  --warmup-ratio
"--mixed-precision", "fp16", # --mixed_precision ๋Œ€์‹  --mixed-precision
"--push-to-hub", # --push_to_hub ๋Œ€์‹  --push-to-hub
"--hub-model-id", request.model_name, # --hub_model_id ๋Œ€์‹  --hub-model-id
"--username", "amis5895"
]
logger.info(f"Running corrected command: {' '.join(cmd)}")
# ๋กœ๊ทธ ํŒŒ์ผ์— ๋ช…๋ น์–ด ๊ธฐ๋ก
try:
with open(log_file, "a", encoding="utf-8") as f:
f.write(f"Corrected Command: {' '.join(cmd)}\n")
f.write("=" * 50 + "\n")
except:
if "log_content" not in training_status:
training_status["log_content"] = ""
training_status["log_content"] += f"Corrected Command: {' '.join(cmd)}\n" + "=" * 50 + "\n"
# AutoTrain ํ”„๋กœ์„ธ์Šค ์‹คํ–‰
process = subprocess.Popen(
cmd,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
bufsize=1,
universal_newlines=True,
cwd="/app",
env=env
)
# ํ•™์Šต ์ง„ํ–‰ ์ƒํ™ฉ ๋ชจ๋‹ˆํ„ฐ๋ง
for line in process.stdout:
logger.info(line.strip())
# ๋กœ๊ทธ ํŒŒ์ผ์— ๊ธฐ๋ก
try:
with open(log_file, "a", encoding="utf-8") as f:
f.write(line)
except:
if "log_content" not in training_status:
training_status["log_content"] = ""
training_status["log_content"] += line
# ์ง„ํ–‰๋ฅ  ํŒŒ์‹ฑ
if "epoch" in line.lower() and "/" in line:
try:
# "Epoch 1/3" ํ˜•ํƒœ์—์„œ ์ง„ํ–‰๋ฅ  ์ถ”์ถœ
parts = line.split()
for i, part in enumerate(parts):
if part.lower() == "epoch" and i + 1 < len(parts):
epoch_info = parts[i + 1]
if "/" in epoch_info:
current, total = epoch_info.split("/")
training_status["current_epoch"] = int(current)
training_status["total_epochs"] = int(total)
training_status["progress"] = (int(current) / int(total)) * 100
break
except:
pass
# ์†์‹ค๊ฐ’ ํŒŒ์‹ฑ
if "loss" in line.lower():
try:
parts = line.split()
for i, part in enumerate(parts):
if part.lower() == "loss" and i + 1 < len(parts):
loss_value = float(parts[i + 1])
training_status["loss"] = loss_value
break
except:
pass
process.wait()
if process.returncode == 0:
training_status.update({
"is_running": False,
"progress": 100,
"status": "completed"
})
logger.info("Training completed successfully!")
# ์™„๋ฃŒ ๋กœ๊ทธ ๊ธฐ๋ก
try:
with open(log_file, "a", encoding="utf-8") as f:
f.write("\n" + "=" * 50 + "\n")
f.write("Training completed successfully!\n")
except:
if "log_content" not in training_status:
training_status["log_content"] = ""
training_status["log_content"] += "\n" + "=" * 50 + "\nTraining completed successfully!\n"
else:
training_status.update({
"is_running": False,
"status": "failed"
})
logger.error("Training failed!")
# ์‹คํŒจ ๋กœ๊ทธ ๊ธฐ๋ก
try:
with open(log_file, "a", encoding="utf-8") as f:
f.write("\n" + "=" * 50 + "\n")
f.write(f"Training failed with return code: {process.returncode}\n")
except:
if "log_content" not in training_status:
training_status["log_content"] = ""
training_status["log_content"] += "\n" + "=" * 50 + f"\nTraining failed with return code: {process.returncode}\n"
except Exception as e:
logger.error(f"Training error: {str(e)}")
training_status.update({
"is_running": False,
"status": "error",
"error": str(e)
})
# ์˜ค๋ฅ˜ ๋กœ๊ทธ ๊ธฐ๋ก
try:
with open(log_file, "a", encoding="utf-8") as f:
f.write(f"\nError: {str(e)}\n")
except:
if "log_content" not in training_status:
training_status["log_content"] = ""
training_status["log_content"] += f"\nError: {str(e)}\n"
@app.get("/status")
async def get_status():
"""ํ•™์Šต ์ƒํƒœ ์กฐํšŒ"""
return training_status
@app.get("/logs")
async def get_logs():
"""๋กœ๊ทธ ์กฐํšŒ"""
log_file = Path(training_status["log_file"])
if log_file.exists():
try:
with open(log_file, "r", encoding="utf-8") as f:
logs = f.read()
return {"logs": logs}
except:
pass
# ํŒŒ์ผ์„ ์ฝ์„ ์ˆ˜ ์—†์œผ๋ฉด ๋ฉ”๋ชจ๋ฆฌ์—์„œ ๊ฐ€์ ธ์˜ค๊ธฐ
if "log_content" in training_status:
return {"logs": training_status["log_content"]}
else:
return {"logs": "No logs available"}
@app.get("/logs/stream")
async def stream_logs():
"""์‹ค์‹œ๊ฐ„ ๋กœ๊ทธ ์ŠคํŠธ๋ฆฌ๋ฐ"""
def generate_logs():
log_file = Path(training_status["log_file"])
if log_file.exists():
try:
with open(log_file, "r", encoding="utf-8") as f:
for line in f:
yield f"data: {line}\\n\\n"
except:
pass
# ํŒŒ์ผ์„ ์ฝ์„ ์ˆ˜ ์—†์œผ๋ฉด ๋ฉ”๋ชจ๋ฆฌ์—์„œ ๊ฐ€์ ธ์˜ค๊ธฐ
if "log_content" in training_status:
for line in training_status["log_content"].split('\n'):
yield f"data: {line}\\n\\n"
else:
yield "data: No logs available\\n\\n"
return StreamingResponse(generate_logs(), media_type="text/plain")
@app.post("/stop_training")
async def stop_training():
"""ํ•™์Šต ์ค‘์ง€"""
global training_status
if not training_status["is_running"]:
raise HTTPException(status_code=400, detail="No training is running")
training_status.update({
"is_running": False,
"status": "stopped"
})
return {"message": "Training stopped"}
@app.get("/health")
async def health_check():
"""ํ—ฌ์Šค ์ฒดํฌ"""
return {"status": "healthy", "timestamp": "2024-01-01T00:00:00Z"}
@app.get("/data_info")
async def get_data_info():
"""๋ฐ์ดํ„ฐ ์ •๋ณด ์กฐํšŒ"""
train_file = Path("/app/train.csv")
val_file = Path("/app/validation.csv")
config_file = Path("/app/autotrain_ultra_low_final.yaml")
info = {
"train_file_exists": train_file.exists(),
"validation_file_exists": val_file.exists(),
"config_file_exists": config_file.exists(),
"train_file_size": train_file.stat().st_size if train_file.exists() else 0,
"validation_file_size": val_file.stat().st_size if val_file.exists() else 0,
"config_file_size": config_file.stat().st_size if config_file.exists() else 0
}
return info
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)