File size: 12,719 Bytes
6dfd72e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
#!/usr/bin/env python3
"""
์˜ฌ๋ฐ”๋ฅธ AutoTrain ๋ช…๋ น์–ด๋ฅผ ์‚ฌ์šฉํ•œ EXAONE Fine-tuning Space FastAPI ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜
"""

import os
import json
import subprocess
import asyncio
from pathlib import Path
from typing import Dict, Any
import logging

from fastapi import FastAPI, HTTPException, BackgroundTasks
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
import uvicorn

# ๋กœ๊น… ์„ค์ •
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI(
    title="EXAONE Fine-tuning",
    description="EXAONE 4.0 1.2B ๋ชจ๋ธ ํŒŒ์ธํŠœ๋‹ API",
    version="1.0.0"
)

# ์ „์—ญ ๋ณ€์ˆ˜
training_status = {
    "is_running": False,
    "progress": 0,
    "current_epoch": 0,
    "total_epochs": 3,
    "loss": 0.0,
    "status": "idle",
    "log_file": "/tmp/training.log"
}

class TrainingRequest(BaseModel):
    model_name: str = "amis5895/exaone-1p2b-nutrition-kdri"

@app.get("/")
async def root():
    """๋ฃจํŠธ ์—”๋“œํฌ์ธํŠธ"""
    return {
        "message": "EXAONE Fine-tuning API",
        "status": "running",
        "version": "1.0.0"
    }

@app.post("/start_training")
async def start_training(request: TrainingRequest, background_tasks: BackgroundTasks):
    """ํ•™์Šต ์‹œ์ž‘"""
    global training_status
    
    if training_status["is_running"]:
        raise HTTPException(status_code=400, detail="Training is already running")
    
    training_status.update({
        "is_running": True,
        "progress": 0,
        "current_epoch": 0,
        "status": "starting"
    })
    
    # ๋ฐฑ๊ทธ๋ผ์šด๋“œ์—์„œ ํ•™์Šต ์‹œ์ž‘
    background_tasks.add_task(run_corrected_training, request)
    
    return {
        "message": "Training started",
        "status": "starting",
        "model_name": request.model_name
    }

async def run_corrected_training(request: TrainingRequest):
    """์ˆ˜์ •๋œ AutoTrain์„ ์‚ฌ์šฉํ•œ ํ•™์Šต ์‹คํ–‰"""
    global training_status
    
    try:
        logger.info("Starting corrected AutoTrain training process...")
        training_status["status"] = "running"
        
        # ๋ฐ์ดํ„ฐ ํŒŒ์ผ ํ™•์ธ
        train_file = Path("/app/train.csv")
        val_file = Path("/app/validation.csv")
        config_file = Path("/app/autotrain_ultra_low_final.yaml")
        
        if not train_file.exists():
            logger.error(f"Training file not found: {train_file}")
            training_status.update({
                "is_running": False,
                "status": "failed",
                "error": "Training file not found"
            })
            return
        
        if not val_file.exists():
            logger.error(f"Validation file not found: {val_file}")
            training_status.update({
                "is_running": False,
                "status": "failed",
                "error": "Validation file not found"
            })
            return
        
        if not config_file.exists():
            logger.error(f"Config file not found: {config_file}")
            training_status.update({
                "is_running": False,
                "status": "failed",
                "error": "Config file not found"
            })
            return
        
        logger.info("All files found, starting corrected AutoTrain training...")
        
        # ๋กœ๊ทธ ํŒŒ์ผ ์ดˆ๊ธฐํ™”
        log_file = Path(training_status["log_file"])
        try:
            log_file.write_text("Starting corrected AutoTrain training...\n", encoding="utf-8")
        except Exception as e:
            logger.warning(f"Could not write to log file: {e}")
            training_status["log_content"] = "Starting corrected AutoTrain training...\n"
        
        # ํ™˜๊ฒฝ๋ณ€์ˆ˜ ์„ค์ •
        env = os.environ.copy()
        env["TRANSFORMERS_CACHE"] = "/tmp/huggingface_cache"
        env["HF_HOME"] = "/tmp/huggingface"
        env["OMP_NUM_THREADS"] = "1"
        
        # ์ˆ˜์ •๋œ AutoTrain ๋ช…๋ น์–ด (์˜ฌ๋ฐ”๋ฅธ ํ˜•์‹ ์‚ฌ์šฉ)
        cmd = [
            "autotrain", "llm",
            "--train",
            "--project_name", "exaone-finetuning",
            "--model", "LGAI-EXAONE/EXAONE-4.0-1.2B",
            "--data_path", "/app",
            "--text_column", "text",
            "--use-peft",  # --use_peft ๋Œ€์‹  --use-peft
            "--quantization", "int4",
            "--lora-r", "16",  # --lora_r ๋Œ€์‹  --lora-r
            "--lora-alpha", "32",  # --lora_alpha ๋Œ€์‹  --lora-alpha
            "--lora-dropout", "0.05",  # --lora_dropout ๋Œ€์‹  --lora-dropout
            "--target-modules", "all-linear",  # --target_modules ๋Œ€์‹  --target-modules
            "--epochs", "3",
            "--batch-size", "4",  # --batch_size ๋Œ€์‹  --batch-size
            "--gradient-accumulation", "4",  # --gradient_accumulation ๋Œ€์‹  --gradient-accumulation
            "--learning-rate", "2e-4",  # --learning_rate ๋Œ€์‹  --learning-rate
            "--warmup-ratio", "0.03",  # --warmup_ratio ๋Œ€์‹  --warmup-ratio
            "--mixed-precision", "fp16",  # --mixed_precision ๋Œ€์‹  --mixed-precision
            "--push-to-hub",  # --push_to_hub ๋Œ€์‹  --push-to-hub
            "--hub-model-id", request.model_name,  # --hub_model_id ๋Œ€์‹  --hub-model-id
            "--username", "amis5895"
        ]
        
        logger.info(f"Running corrected command: {' '.join(cmd)}")
        
        # ๋กœ๊ทธ ํŒŒ์ผ์— ๋ช…๋ น์–ด ๊ธฐ๋ก
        try:
            with open(log_file, "a", encoding="utf-8") as f:
                f.write(f"Corrected Command: {' '.join(cmd)}\n")
                f.write("=" * 50 + "\n")
        except:
            if "log_content" not in training_status:
                training_status["log_content"] = ""
            training_status["log_content"] += f"Corrected Command: {' '.join(cmd)}\n" + "=" * 50 + "\n"
        
        # AutoTrain ํ”„๋กœ์„ธ์Šค ์‹คํ–‰
        process = subprocess.Popen(
            cmd,
            stdout=subprocess.PIPE,
            stderr=subprocess.STDOUT,
            text=True,
            bufsize=1,
            universal_newlines=True,
            cwd="/app",
            env=env
        )
        
        # ํ•™์Šต ์ง„ํ–‰ ์ƒํ™ฉ ๋ชจ๋‹ˆํ„ฐ๋ง
        for line in process.stdout:
            logger.info(line.strip())
            
            # ๋กœ๊ทธ ํŒŒ์ผ์— ๊ธฐ๋ก
            try:
                with open(log_file, "a", encoding="utf-8") as f:
                    f.write(line)
            except:
                if "log_content" not in training_status:
                    training_status["log_content"] = ""
                training_status["log_content"] += line
            
            # ์ง„ํ–‰๋ฅ  ํŒŒ์‹ฑ
            if "epoch" in line.lower() and "/" in line:
                try:
                    # "Epoch 1/3" ํ˜•ํƒœ์—์„œ ์ง„ํ–‰๋ฅ  ์ถ”์ถœ
                    parts = line.split()
                    for i, part in enumerate(parts):
                        if part.lower() == "epoch" and i + 1 < len(parts):
                            epoch_info = parts[i + 1]
                            if "/" in epoch_info:
                                current, total = epoch_info.split("/")
                                training_status["current_epoch"] = int(current)
                                training_status["total_epochs"] = int(total)
                                training_status["progress"] = (int(current) / int(total)) * 100
                                break
                except:
                    pass
            
            # ์†์‹ค๊ฐ’ ํŒŒ์‹ฑ
            if "loss" in line.lower():
                try:
                    parts = line.split()
                    for i, part in enumerate(parts):
                        if part.lower() == "loss" and i + 1 < len(parts):
                            loss_value = float(parts[i + 1])
                            training_status["loss"] = loss_value
                            break
                except:
                    pass
        
        process.wait()
        
        if process.returncode == 0:
            training_status.update({
                "is_running": False,
                "progress": 100,
                "status": "completed"
            })
            logger.info("Training completed successfully!")
            
            # ์™„๋ฃŒ ๋กœ๊ทธ ๊ธฐ๋ก
            try:
                with open(log_file, "a", encoding="utf-8") as f:
                    f.write("\n" + "=" * 50 + "\n")
                    f.write("Training completed successfully!\n")
            except:
                if "log_content" not in training_status:
                    training_status["log_content"] = ""
                training_status["log_content"] += "\n" + "=" * 50 + "\nTraining completed successfully!\n"
        else:
            training_status.update({
                "is_running": False,
                "status": "failed"
            })
            logger.error("Training failed!")
            
            # ์‹คํŒจ ๋กœ๊ทธ ๊ธฐ๋ก
            try:
                with open(log_file, "a", encoding="utf-8") as f:
                    f.write("\n" + "=" * 50 + "\n")
                    f.write(f"Training failed with return code: {process.returncode}\n")
            except:
                if "log_content" not in training_status:
                    training_status["log_content"] = ""
                training_status["log_content"] += "\n" + "=" * 50 + f"\nTraining failed with return code: {process.returncode}\n"
            
    except Exception as e:
        logger.error(f"Training error: {str(e)}")
        training_status.update({
            "is_running": False,
            "status": "error",
            "error": str(e)
        })
        
        # ์˜ค๋ฅ˜ ๋กœ๊ทธ ๊ธฐ๋ก
        try:
            with open(log_file, "a", encoding="utf-8") as f:
                f.write(f"\nError: {str(e)}\n")
        except:
            if "log_content" not in training_status:
                training_status["log_content"] = ""
            training_status["log_content"] += f"\nError: {str(e)}\n"

@app.get("/status")
async def get_status():
    """ํ•™์Šต ์ƒํƒœ ์กฐํšŒ"""
    return training_status

@app.get("/logs")
async def get_logs():
    """๋กœ๊ทธ ์กฐํšŒ"""
    log_file = Path(training_status["log_file"])
    if log_file.exists():
        try:
            with open(log_file, "r", encoding="utf-8") as f:
                logs = f.read()
            return {"logs": logs}
        except:
            pass
    
    # ํŒŒ์ผ์„ ์ฝ์„ ์ˆ˜ ์—†์œผ๋ฉด ๋ฉ”๋ชจ๋ฆฌ์—์„œ ๊ฐ€์ ธ์˜ค๊ธฐ
    if "log_content" in training_status:
        return {"logs": training_status["log_content"]}
    else:
        return {"logs": "No logs available"}

@app.get("/logs/stream")
async def stream_logs():
    """์‹ค์‹œ๊ฐ„ ๋กœ๊ทธ ์ŠคํŠธ๋ฆฌ๋ฐ"""
    def generate_logs():
        log_file = Path(training_status["log_file"])
        if log_file.exists():
            try:
                with open(log_file, "r", encoding="utf-8") as f:
                    for line in f:
                        yield f"data: {line}\\n\\n"
            except:
                pass
        
        # ํŒŒ์ผ์„ ์ฝ์„ ์ˆ˜ ์—†์œผ๋ฉด ๋ฉ”๋ชจ๋ฆฌ์—์„œ ๊ฐ€์ ธ์˜ค๊ธฐ
        if "log_content" in training_status:
            for line in training_status["log_content"].split('\n'):
                yield f"data: {line}\\n\\n"
        else:
            yield "data: No logs available\\n\\n"
    
    return StreamingResponse(generate_logs(), media_type="text/plain")

@app.post("/stop_training")
async def stop_training():
    """ํ•™์Šต ์ค‘์ง€"""
    global training_status
    
    if not training_status["is_running"]:
        raise HTTPException(status_code=400, detail="No training is running")
    
    training_status.update({
        "is_running": False,
        "status": "stopped"
    })
    
    return {"message": "Training stopped"}

@app.get("/health")
async def health_check():
    """ํ—ฌ์Šค ์ฒดํฌ"""
    return {"status": "healthy", "timestamp": "2024-01-01T00:00:00Z"}

@app.get("/data_info")
async def get_data_info():
    """๋ฐ์ดํ„ฐ ์ •๋ณด ์กฐํšŒ"""
    train_file = Path("/app/train.csv")
    val_file = Path("/app/validation.csv")
    config_file = Path("/app/autotrain_ultra_low_final.yaml")
    
    info = {
        "train_file_exists": train_file.exists(),
        "validation_file_exists": val_file.exists(),
        "config_file_exists": config_file.exists(),
        "train_file_size": train_file.stat().st_size if train_file.exists() else 0,
        "validation_file_size": val_file.stat().st_size if val_file.exists() else 0,
        "config_file_size": config_file.stat().st_size if config_file.exists() else 0
    }
    
    return info

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)