Spaces:
Paused
Paused
Fix AutoTrain command arguments - use correct format
Browse files- app.py +34 -28
- app_corrected_autotrain.py +360 -0
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
-
|
| 4 |
"""
|
| 5 |
|
| 6 |
import os
|
|
@@ -34,7 +34,7 @@ training_status = {
|
|
| 34 |
"total_epochs": 3,
|
| 35 |
"loss": 0.0,
|
| 36 |
"status": "idle",
|
| 37 |
-
"log_file": "/tmp/training.log"
|
| 38 |
}
|
| 39 |
|
| 40 |
class TrainingRequest(BaseModel):
|
|
@@ -65,7 +65,7 @@ async def start_training(request: TrainingRequest, background_tasks: BackgroundT
|
|
| 65 |
})
|
| 66 |
|
| 67 |
# ๋ฐฑ๊ทธ๋ผ์ด๋์์ ํ์ต ์์
|
| 68 |
-
background_tasks.add_task(
|
| 69 |
|
| 70 |
return {
|
| 71 |
"message": "Training started",
|
|
@@ -73,12 +73,12 @@ async def start_training(request: TrainingRequest, background_tasks: BackgroundT
|
|
| 73 |
"model_name": request.model_name
|
| 74 |
}
|
| 75 |
|
| 76 |
-
async def
|
| 77 |
-
"""
|
| 78 |
global training_status
|
| 79 |
|
| 80 |
try:
|
| 81 |
-
logger.info("Starting
|
| 82 |
training_status["status"] = "running"
|
| 83 |
|
| 84 |
# ๋ฐ์ดํฐ ํ์ผ ํ์ธ
|
|
@@ -113,18 +113,23 @@ async def run_real_training(request: TrainingRequest):
|
|
| 113 |
})
|
| 114 |
return
|
| 115 |
|
| 116 |
-
logger.info("All files found, starting
|
| 117 |
|
| 118 |
-
# ๋ก๊ทธ ํ์ผ ์ด๊ธฐํ
|
| 119 |
log_file = Path(training_status["log_file"])
|
| 120 |
try:
|
| 121 |
-
log_file.write_text("Starting AutoTrain training...\n", encoding="utf-8")
|
| 122 |
except Exception as e:
|
| 123 |
logger.warning(f"Could not write to log file: {e}")
|
| 124 |
-
|
| 125 |
-
training_status["log_content"] = "Starting AutoTrain training...\n"
|
| 126 |
|
| 127 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
cmd = [
|
| 129 |
"autotrain", "llm",
|
| 130 |
"--train",
|
|
@@ -132,34 +137,34 @@ async def run_real_training(request: TrainingRequest):
|
|
| 132 |
"--model", "LGAI-EXAONE/EXAONE-4.0-1.2B",
|
| 133 |
"--data_path", "/app",
|
| 134 |
"--text_column", "text",
|
| 135 |
-
"--
|
| 136 |
"--quantization", "int4",
|
| 137 |
-
"--
|
| 138 |
-
"--
|
| 139 |
-
"--
|
| 140 |
-
"--
|
| 141 |
"--epochs", "3",
|
| 142 |
-
"--
|
| 143 |
-
"--
|
| 144 |
-
"--
|
| 145 |
-
"--
|
| 146 |
-
"--
|
| 147 |
-
"--
|
| 148 |
-
"--
|
| 149 |
"--username", "amis5895"
|
| 150 |
]
|
| 151 |
|
| 152 |
-
logger.info(f"Running command: {' '.join(cmd)}")
|
| 153 |
|
| 154 |
# ๋ก๊ทธ ํ์ผ์ ๋ช
๋ น์ด ๊ธฐ๋ก
|
| 155 |
try:
|
| 156 |
with open(log_file, "a", encoding="utf-8") as f:
|
| 157 |
-
f.write(f"Command: {' '.join(cmd)}\n")
|
| 158 |
f.write("=" * 50 + "\n")
|
| 159 |
except:
|
| 160 |
if "log_content" not in training_status:
|
| 161 |
training_status["log_content"] = ""
|
| 162 |
-
training_status["log_content"] += f"Command: {' '.join(cmd)}\n" + "=" * 50 + "\n"
|
| 163 |
|
| 164 |
# AutoTrain ํ๋ก์ธ์ค ์คํ
|
| 165 |
process = subprocess.Popen(
|
|
@@ -169,7 +174,8 @@ async def run_real_training(request: TrainingRequest):
|
|
| 169 |
text=True,
|
| 170 |
bufsize=1,
|
| 171 |
universal_newlines=True,
|
| 172 |
-
cwd="/app"
|
|
|
|
| 173 |
)
|
| 174 |
|
| 175 |
# ํ์ต ์งํ ์ํฉ ๋ชจ๋ํฐ๋ง
|
|
|
|
| 1 |
#!/usr/bin/env python3
|
| 2 |
"""
|
| 3 |
+
์ฌ๋ฐ๋ฅธ AutoTrain ๋ช
๋ น์ด๋ฅผ ์ฌ์ฉํ EXAONE Fine-tuning Space FastAPI ์ ํ๋ฆฌ์ผ์ด์
|
| 4 |
"""
|
| 5 |
|
| 6 |
import os
|
|
|
|
| 34 |
"total_epochs": 3,
|
| 35 |
"loss": 0.0,
|
| 36 |
"status": "idle",
|
| 37 |
+
"log_file": "/tmp/training.log"
|
| 38 |
}
|
| 39 |
|
| 40 |
class TrainingRequest(BaseModel):
|
|
|
|
| 65 |
})
|
| 66 |
|
| 67 |
# ๋ฐฑ๊ทธ๋ผ์ด๋์์ ํ์ต ์์
|
| 68 |
+
background_tasks.add_task(run_corrected_training, request)
|
| 69 |
|
| 70 |
return {
|
| 71 |
"message": "Training started",
|
|
|
|
| 73 |
"model_name": request.model_name
|
| 74 |
}
|
| 75 |
|
| 76 |
+
async def run_corrected_training(request: TrainingRequest):
|
| 77 |
+
"""์์ ๋ AutoTrain์ ์ฌ์ฉํ ํ์ต ์คํ"""
|
| 78 |
global training_status
|
| 79 |
|
| 80 |
try:
|
| 81 |
+
logger.info("Starting corrected AutoTrain training process...")
|
| 82 |
training_status["status"] = "running"
|
| 83 |
|
| 84 |
# ๋ฐ์ดํฐ ํ์ผ ํ์ธ
|
|
|
|
| 113 |
})
|
| 114 |
return
|
| 115 |
|
| 116 |
+
logger.info("All files found, starting corrected AutoTrain training...")
|
| 117 |
|
| 118 |
+
# ๋ก๊ทธ ํ์ผ ์ด๊ธฐํ
|
| 119 |
log_file = Path(training_status["log_file"])
|
| 120 |
try:
|
| 121 |
+
log_file.write_text("Starting corrected AutoTrain training...\n", encoding="utf-8")
|
| 122 |
except Exception as e:
|
| 123 |
logger.warning(f"Could not write to log file: {e}")
|
| 124 |
+
training_status["log_content"] = "Starting corrected AutoTrain training...\n"
|
|
|
|
| 125 |
|
| 126 |
+
# ํ๊ฒฝ๋ณ์ ์ค์
|
| 127 |
+
env = os.environ.copy()
|
| 128 |
+
env["TRANSFORMERS_CACHE"] = "/tmp/huggingface_cache"
|
| 129 |
+
env["HF_HOME"] = "/tmp/huggingface"
|
| 130 |
+
env["OMP_NUM_THREADS"] = "1"
|
| 131 |
+
|
| 132 |
+
# ์์ ๋ AutoTrain ๋ช
๋ น์ด (์ฌ๋ฐ๋ฅธ ํ์ ์ฌ์ฉ)
|
| 133 |
cmd = [
|
| 134 |
"autotrain", "llm",
|
| 135 |
"--train",
|
|
|
|
| 137 |
"--model", "LGAI-EXAONE/EXAONE-4.0-1.2B",
|
| 138 |
"--data_path", "/app",
|
| 139 |
"--text_column", "text",
|
| 140 |
+
"--use-peft", # --use_peft ๋์ --use-peft
|
| 141 |
"--quantization", "int4",
|
| 142 |
+
"--lora-r", "16", # --lora_r ๋์ --lora-r
|
| 143 |
+
"--lora-alpha", "32", # --lora_alpha ๋์ --lora-alpha
|
| 144 |
+
"--lora-dropout", "0.05", # --lora_dropout ๋์ --lora-dropout
|
| 145 |
+
"--target-modules", "all-linear", # --target_modules ๋์ --target-modules
|
| 146 |
"--epochs", "3",
|
| 147 |
+
"--batch-size", "4", # --batch_size ๋์ --batch-size
|
| 148 |
+
"--gradient-accumulation", "4", # --gradient_accumulation ๋์ --gradient-accumulation
|
| 149 |
+
"--learning-rate", "2e-4", # --learning_rate ๋์ --learning-rate
|
| 150 |
+
"--warmup-ratio", "0.03", # --warmup_ratio ๋์ --warmup-ratio
|
| 151 |
+
"--mixed-precision", "fp16", # --mixed_precision ๋์ --mixed-precision
|
| 152 |
+
"--push-to-hub", # --push_to_hub ๋์ --push-to-hub
|
| 153 |
+
"--hub-model-id", request.model_name, # --hub_model_id ๋์ --hub-model-id
|
| 154 |
"--username", "amis5895"
|
| 155 |
]
|
| 156 |
|
| 157 |
+
logger.info(f"Running corrected command: {' '.join(cmd)}")
|
| 158 |
|
| 159 |
# ๋ก๊ทธ ํ์ผ์ ๋ช
๋ น์ด ๊ธฐ๋ก
|
| 160 |
try:
|
| 161 |
with open(log_file, "a", encoding="utf-8") as f:
|
| 162 |
+
f.write(f"Corrected Command: {' '.join(cmd)}\n")
|
| 163 |
f.write("=" * 50 + "\n")
|
| 164 |
except:
|
| 165 |
if "log_content" not in training_status:
|
| 166 |
training_status["log_content"] = ""
|
| 167 |
+
training_status["log_content"] += f"Corrected Command: {' '.join(cmd)}\n" + "=" * 50 + "\n"
|
| 168 |
|
| 169 |
# AutoTrain ํ๋ก์ธ์ค ์คํ
|
| 170 |
process = subprocess.Popen(
|
|
|
|
| 174 |
text=True,
|
| 175 |
bufsize=1,
|
| 176 |
universal_newlines=True,
|
| 177 |
+
cwd="/app",
|
| 178 |
+
env=env
|
| 179 |
)
|
| 180 |
|
| 181 |
# ํ์ต ์งํ ์ํฉ ๋ชจ๋ํฐ๋ง
|
app_corrected_autotrain.py
ADDED
|
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
์ฌ๋ฐ๋ฅธ AutoTrain ๋ช
๋ น์ด๋ฅผ ์ฌ์ฉํ EXAONE Fine-tuning Space FastAPI ์ ํ๋ฆฌ์ผ์ด์
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import json
|
| 8 |
+
import subprocess
|
| 9 |
+
import asyncio
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
from typing import Dict, Any
|
| 12 |
+
import logging
|
| 13 |
+
|
| 14 |
+
from fastapi import FastAPI, HTTPException, BackgroundTasks
|
| 15 |
+
from fastapi.responses import StreamingResponse
|
| 16 |
+
from pydantic import BaseModel
|
| 17 |
+
import uvicorn
|
| 18 |
+
|
| 19 |
+
# ๋ก๊น
์ค์
|
| 20 |
+
logging.basicConfig(level=logging.INFO)
|
| 21 |
+
logger = logging.getLogger(__name__)
|
| 22 |
+
|
| 23 |
+
app = FastAPI(
|
| 24 |
+
title="EXAONE Fine-tuning",
|
| 25 |
+
description="EXAONE 4.0 1.2B ๋ชจ๋ธ ํ์ธํ๋ API",
|
| 26 |
+
version="1.0.0"
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
# ์ ์ญ ๋ณ์
|
| 30 |
+
training_status = {
|
| 31 |
+
"is_running": False,
|
| 32 |
+
"progress": 0,
|
| 33 |
+
"current_epoch": 0,
|
| 34 |
+
"total_epochs": 3,
|
| 35 |
+
"loss": 0.0,
|
| 36 |
+
"status": "idle",
|
| 37 |
+
"log_file": "/tmp/training.log"
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
class TrainingRequest(BaseModel):
|
| 41 |
+
model_name: str = "amis5895/exaone-1p2b-nutrition-kdri"
|
| 42 |
+
|
| 43 |
+
@app.get("/")
|
| 44 |
+
async def root():
|
| 45 |
+
"""๋ฃจํธ ์๋ํฌ์ธํธ"""
|
| 46 |
+
return {
|
| 47 |
+
"message": "EXAONE Fine-tuning API",
|
| 48 |
+
"status": "running",
|
| 49 |
+
"version": "1.0.0"
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
@app.post("/start_training")
|
| 53 |
+
async def start_training(request: TrainingRequest, background_tasks: BackgroundTasks):
|
| 54 |
+
"""ํ์ต ์์"""
|
| 55 |
+
global training_status
|
| 56 |
+
|
| 57 |
+
if training_status["is_running"]:
|
| 58 |
+
raise HTTPException(status_code=400, detail="Training is already running")
|
| 59 |
+
|
| 60 |
+
training_status.update({
|
| 61 |
+
"is_running": True,
|
| 62 |
+
"progress": 0,
|
| 63 |
+
"current_epoch": 0,
|
| 64 |
+
"status": "starting"
|
| 65 |
+
})
|
| 66 |
+
|
| 67 |
+
# ๋ฐฑ๊ทธ๋ผ์ด๋์์ ํ์ต ์์
|
| 68 |
+
background_tasks.add_task(run_corrected_training, request)
|
| 69 |
+
|
| 70 |
+
return {
|
| 71 |
+
"message": "Training started",
|
| 72 |
+
"status": "starting",
|
| 73 |
+
"model_name": request.model_name
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
async def run_corrected_training(request: TrainingRequest):
|
| 77 |
+
"""์์ ๋ AutoTrain์ ์ฌ์ฉํ ํ์ต ์คํ"""
|
| 78 |
+
global training_status
|
| 79 |
+
|
| 80 |
+
try:
|
| 81 |
+
logger.info("Starting corrected AutoTrain training process...")
|
| 82 |
+
training_status["status"] = "running"
|
| 83 |
+
|
| 84 |
+
# ๋ฐ์ดํฐ ํ์ผ ํ์ธ
|
| 85 |
+
train_file = Path("/app/train.csv")
|
| 86 |
+
val_file = Path("/app/validation.csv")
|
| 87 |
+
config_file = Path("/app/autotrain_ultra_low_final.yaml")
|
| 88 |
+
|
| 89 |
+
if not train_file.exists():
|
| 90 |
+
logger.error(f"Training file not found: {train_file}")
|
| 91 |
+
training_status.update({
|
| 92 |
+
"is_running": False,
|
| 93 |
+
"status": "failed",
|
| 94 |
+
"error": "Training file not found"
|
| 95 |
+
})
|
| 96 |
+
return
|
| 97 |
+
|
| 98 |
+
if not val_file.exists():
|
| 99 |
+
logger.error(f"Validation file not found: {val_file}")
|
| 100 |
+
training_status.update({
|
| 101 |
+
"is_running": False,
|
| 102 |
+
"status": "failed",
|
| 103 |
+
"error": "Validation file not found"
|
| 104 |
+
})
|
| 105 |
+
return
|
| 106 |
+
|
| 107 |
+
if not config_file.exists():
|
| 108 |
+
logger.error(f"Config file not found: {config_file}")
|
| 109 |
+
training_status.update({
|
| 110 |
+
"is_running": False,
|
| 111 |
+
"status": "failed",
|
| 112 |
+
"error": "Config file not found"
|
| 113 |
+
})
|
| 114 |
+
return
|
| 115 |
+
|
| 116 |
+
logger.info("All files found, starting corrected AutoTrain training...")
|
| 117 |
+
|
| 118 |
+
# ๋ก๊ทธ ํ์ผ ์ด๊ธฐํ
|
| 119 |
+
log_file = Path(training_status["log_file"])
|
| 120 |
+
try:
|
| 121 |
+
log_file.write_text("Starting corrected AutoTrain training...\n", encoding="utf-8")
|
| 122 |
+
except Exception as e:
|
| 123 |
+
logger.warning(f"Could not write to log file: {e}")
|
| 124 |
+
training_status["log_content"] = "Starting corrected AutoTrain training...\n"
|
| 125 |
+
|
| 126 |
+
# ํ๊ฒฝ๋ณ์ ์ค์
|
| 127 |
+
env = os.environ.copy()
|
| 128 |
+
env["TRANSFORMERS_CACHE"] = "/tmp/huggingface_cache"
|
| 129 |
+
env["HF_HOME"] = "/tmp/huggingface"
|
| 130 |
+
env["OMP_NUM_THREADS"] = "1"
|
| 131 |
+
|
| 132 |
+
# ์์ ๋ AutoTrain ๋ช
๋ น์ด (์ฌ๋ฐ๋ฅธ ํ์ ์ฌ์ฉ)
|
| 133 |
+
cmd = [
|
| 134 |
+
"autotrain", "llm",
|
| 135 |
+
"--train",
|
| 136 |
+
"--project_name", "exaone-finetuning",
|
| 137 |
+
"--model", "LGAI-EXAONE/EXAONE-4.0-1.2B",
|
| 138 |
+
"--data_path", "/app",
|
| 139 |
+
"--text_column", "text",
|
| 140 |
+
"--use-peft", # --use_peft ๋์ --use-peft
|
| 141 |
+
"--quantization", "int4",
|
| 142 |
+
"--lora-r", "16", # --lora_r ๋์ --lora-r
|
| 143 |
+
"--lora-alpha", "32", # --lora_alpha ๋์ --lora-alpha
|
| 144 |
+
"--lora-dropout", "0.05", # --lora_dropout ๋์ --lora-dropout
|
| 145 |
+
"--target-modules", "all-linear", # --target_modules ๋์ --target-modules
|
| 146 |
+
"--epochs", "3",
|
| 147 |
+
"--batch-size", "4", # --batch_size ๋์ --batch-size
|
| 148 |
+
"--gradient-accumulation", "4", # --gradient_accumulation ๋์ --gradient-accumulation
|
| 149 |
+
"--learning-rate", "2e-4", # --learning_rate ๋์ --learning-rate
|
| 150 |
+
"--warmup-ratio", "0.03", # --warmup_ratio ๋์ --warmup-ratio
|
| 151 |
+
"--mixed-precision", "fp16", # --mixed_precision ๋์ --mixed-precision
|
| 152 |
+
"--push-to-hub", # --push_to_hub ๋์ --push-to-hub
|
| 153 |
+
"--hub-model-id", request.model_name, # --hub_model_id ๋์ --hub-model-id
|
| 154 |
+
"--username", "amis5895"
|
| 155 |
+
]
|
| 156 |
+
|
| 157 |
+
logger.info(f"Running corrected command: {' '.join(cmd)}")
|
| 158 |
+
|
| 159 |
+
# ๋ก๊ทธ ํ์ผ์ ๋ช
๋ น์ด ๊ธฐ๋ก
|
| 160 |
+
try:
|
| 161 |
+
with open(log_file, "a", encoding="utf-8") as f:
|
| 162 |
+
f.write(f"Corrected Command: {' '.join(cmd)}\n")
|
| 163 |
+
f.write("=" * 50 + "\n")
|
| 164 |
+
except:
|
| 165 |
+
if "log_content" not in training_status:
|
| 166 |
+
training_status["log_content"] = ""
|
| 167 |
+
training_status["log_content"] += f"Corrected Command: {' '.join(cmd)}\n" + "=" * 50 + "\n"
|
| 168 |
+
|
| 169 |
+
# AutoTrain ํ๋ก์ธ์ค ์คํ
|
| 170 |
+
process = subprocess.Popen(
|
| 171 |
+
cmd,
|
| 172 |
+
stdout=subprocess.PIPE,
|
| 173 |
+
stderr=subprocess.STDOUT,
|
| 174 |
+
text=True,
|
| 175 |
+
bufsize=1,
|
| 176 |
+
universal_newlines=True,
|
| 177 |
+
cwd="/app",
|
| 178 |
+
env=env
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
# ํ์ต ์งํ ์ํฉ ๋ชจ๋ํฐ๋ง
|
| 182 |
+
for line in process.stdout:
|
| 183 |
+
logger.info(line.strip())
|
| 184 |
+
|
| 185 |
+
# ๋ก๊ทธ ํ์ผ์ ๊ธฐ๋ก
|
| 186 |
+
try:
|
| 187 |
+
with open(log_file, "a", encoding="utf-8") as f:
|
| 188 |
+
f.write(line)
|
| 189 |
+
except:
|
| 190 |
+
if "log_content" not in training_status:
|
| 191 |
+
training_status["log_content"] = ""
|
| 192 |
+
training_status["log_content"] += line
|
| 193 |
+
|
| 194 |
+
# ์งํ๋ฅ ํ์ฑ
|
| 195 |
+
if "epoch" in line.lower() and "/" in line:
|
| 196 |
+
try:
|
| 197 |
+
# "Epoch 1/3" ํํ์์ ์งํ๋ฅ ์ถ์ถ
|
| 198 |
+
parts = line.split()
|
| 199 |
+
for i, part in enumerate(parts):
|
| 200 |
+
if part.lower() == "epoch" and i + 1 < len(parts):
|
| 201 |
+
epoch_info = parts[i + 1]
|
| 202 |
+
if "/" in epoch_info:
|
| 203 |
+
current, total = epoch_info.split("/")
|
| 204 |
+
training_status["current_epoch"] = int(current)
|
| 205 |
+
training_status["total_epochs"] = int(total)
|
| 206 |
+
training_status["progress"] = (int(current) / int(total)) * 100
|
| 207 |
+
break
|
| 208 |
+
except:
|
| 209 |
+
pass
|
| 210 |
+
|
| 211 |
+
# ์์ค๊ฐ ํ์ฑ
|
| 212 |
+
if "loss" in line.lower():
|
| 213 |
+
try:
|
| 214 |
+
parts = line.split()
|
| 215 |
+
for i, part in enumerate(parts):
|
| 216 |
+
if part.lower() == "loss" and i + 1 < len(parts):
|
| 217 |
+
loss_value = float(parts[i + 1])
|
| 218 |
+
training_status["loss"] = loss_value
|
| 219 |
+
break
|
| 220 |
+
except:
|
| 221 |
+
pass
|
| 222 |
+
|
| 223 |
+
process.wait()
|
| 224 |
+
|
| 225 |
+
if process.returncode == 0:
|
| 226 |
+
training_status.update({
|
| 227 |
+
"is_running": False,
|
| 228 |
+
"progress": 100,
|
| 229 |
+
"status": "completed"
|
| 230 |
+
})
|
| 231 |
+
logger.info("Training completed successfully!")
|
| 232 |
+
|
| 233 |
+
# ์๋ฃ ๋ก๊ทธ ๊ธฐ๋ก
|
| 234 |
+
try:
|
| 235 |
+
with open(log_file, "a", encoding="utf-8") as f:
|
| 236 |
+
f.write("\n" + "=" * 50 + "\n")
|
| 237 |
+
f.write("Training completed successfully!\n")
|
| 238 |
+
except:
|
| 239 |
+
if "log_content" not in training_status:
|
| 240 |
+
training_status["log_content"] = ""
|
| 241 |
+
training_status["log_content"] += "\n" + "=" * 50 + "\nTraining completed successfully!\n"
|
| 242 |
+
else:
|
| 243 |
+
training_status.update({
|
| 244 |
+
"is_running": False,
|
| 245 |
+
"status": "failed"
|
| 246 |
+
})
|
| 247 |
+
logger.error("Training failed!")
|
| 248 |
+
|
| 249 |
+
# ์คํจ ๋ก๊ทธ ๊ธฐ๋ก
|
| 250 |
+
try:
|
| 251 |
+
with open(log_file, "a", encoding="utf-8") as f:
|
| 252 |
+
f.write("\n" + "=" * 50 + "\n")
|
| 253 |
+
f.write(f"Training failed with return code: {process.returncode}\n")
|
| 254 |
+
except:
|
| 255 |
+
if "log_content" not in training_status:
|
| 256 |
+
training_status["log_content"] = ""
|
| 257 |
+
training_status["log_content"] += "\n" + "=" * 50 + f"\nTraining failed with return code: {process.returncode}\n"
|
| 258 |
+
|
| 259 |
+
except Exception as e:
|
| 260 |
+
logger.error(f"Training error: {str(e)}")
|
| 261 |
+
training_status.update({
|
| 262 |
+
"is_running": False,
|
| 263 |
+
"status": "error",
|
| 264 |
+
"error": str(e)
|
| 265 |
+
})
|
| 266 |
+
|
| 267 |
+
# ์ค๋ฅ ๋ก๊ทธ ๊ธฐ๋ก
|
| 268 |
+
try:
|
| 269 |
+
with open(log_file, "a", encoding="utf-8") as f:
|
| 270 |
+
f.write(f"\nError: {str(e)}\n")
|
| 271 |
+
except:
|
| 272 |
+
if "log_content" not in training_status:
|
| 273 |
+
training_status["log_content"] = ""
|
| 274 |
+
training_status["log_content"] += f"\nError: {str(e)}\n"
|
| 275 |
+
|
| 276 |
+
@app.get("/status")
|
| 277 |
+
async def get_status():
|
| 278 |
+
"""ํ์ต ์ํ ์กฐํ"""
|
| 279 |
+
return training_status
|
| 280 |
+
|
| 281 |
+
@app.get("/logs")
|
| 282 |
+
async def get_logs():
|
| 283 |
+
"""๋ก๊ทธ ์กฐํ"""
|
| 284 |
+
log_file = Path(training_status["log_file"])
|
| 285 |
+
if log_file.exists():
|
| 286 |
+
try:
|
| 287 |
+
with open(log_file, "r", encoding="utf-8") as f:
|
| 288 |
+
logs = f.read()
|
| 289 |
+
return {"logs": logs}
|
| 290 |
+
except:
|
| 291 |
+
pass
|
| 292 |
+
|
| 293 |
+
# ํ์ผ์ ์ฝ์ ์ ์์ผ๋ฉด ๋ฉ๋ชจ๋ฆฌ์์ ๊ฐ์ ธ์ค๊ธฐ
|
| 294 |
+
if "log_content" in training_status:
|
| 295 |
+
return {"logs": training_status["log_content"]}
|
| 296 |
+
else:
|
| 297 |
+
return {"logs": "No logs available"}
|
| 298 |
+
|
| 299 |
+
@app.get("/logs/stream")
|
| 300 |
+
async def stream_logs():
|
| 301 |
+
"""์ค์๊ฐ ๋ก๊ทธ ์คํธ๋ฆฌ๋ฐ"""
|
| 302 |
+
def generate_logs():
|
| 303 |
+
log_file = Path(training_status["log_file"])
|
| 304 |
+
if log_file.exists():
|
| 305 |
+
try:
|
| 306 |
+
with open(log_file, "r", encoding="utf-8") as f:
|
| 307 |
+
for line in f:
|
| 308 |
+
yield f"data: {line}\\n\\n"
|
| 309 |
+
except:
|
| 310 |
+
pass
|
| 311 |
+
|
| 312 |
+
# ํ์ผ์ ์ฝ์ ์ ์์ผ๋ฉด ๋ฉ๋ชจ๋ฆฌ์์ ๊ฐ์ ธ์ค๊ธฐ
|
| 313 |
+
if "log_content" in training_status:
|
| 314 |
+
for line in training_status["log_content"].split('\n'):
|
| 315 |
+
yield f"data: {line}\\n\\n"
|
| 316 |
+
else:
|
| 317 |
+
yield "data: No logs available\\n\\n"
|
| 318 |
+
|
| 319 |
+
return StreamingResponse(generate_logs(), media_type="text/plain")
|
| 320 |
+
|
| 321 |
+
@app.post("/stop_training")
|
| 322 |
+
async def stop_training():
|
| 323 |
+
"""ํ์ต ์ค์ง"""
|
| 324 |
+
global training_status
|
| 325 |
+
|
| 326 |
+
if not training_status["is_running"]:
|
| 327 |
+
raise HTTPException(status_code=400, detail="No training is running")
|
| 328 |
+
|
| 329 |
+
training_status.update({
|
| 330 |
+
"is_running": False,
|
| 331 |
+
"status": "stopped"
|
| 332 |
+
})
|
| 333 |
+
|
| 334 |
+
return {"message": "Training stopped"}
|
| 335 |
+
|
| 336 |
+
@app.get("/health")
|
| 337 |
+
async def health_check():
|
| 338 |
+
"""ํฌ์ค ์ฒดํฌ"""
|
| 339 |
+
return {"status": "healthy", "timestamp": "2024-01-01T00:00:00Z"}
|
| 340 |
+
|
| 341 |
+
@app.get("/data_info")
|
| 342 |
+
async def get_data_info():
|
| 343 |
+
"""๋ฐ์ดํฐ ์ ๋ณด ์กฐํ"""
|
| 344 |
+
train_file = Path("/app/train.csv")
|
| 345 |
+
val_file = Path("/app/validation.csv")
|
| 346 |
+
config_file = Path("/app/autotrain_ultra_low_final.yaml")
|
| 347 |
+
|
| 348 |
+
info = {
|
| 349 |
+
"train_file_exists": train_file.exists(),
|
| 350 |
+
"validation_file_exists": val_file.exists(),
|
| 351 |
+
"config_file_exists": config_file.exists(),
|
| 352 |
+
"train_file_size": train_file.stat().st_size if train_file.exists() else 0,
|
| 353 |
+
"validation_file_size": val_file.stat().st_size if val_file.exists() else 0,
|
| 354 |
+
"config_file_size": config_file.stat().st_size if config_file.exists() else 0
|
| 355 |
+
}
|
| 356 |
+
|
| 357 |
+
return info
|
| 358 |
+
|
| 359 |
+
if __name__ == "__main__":
|
| 360 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|