File size: 12,945 Bytes
cfd4139
38697f1
fe0f3db
dd4d9a4
c359068
cfd4139
dd4d9a4
fe0f3db
4328fda
fe0f3db
 
b816a05
8fc52b2
b816a05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cfd4139
 
1678afb
cfd4139
 
 
 
 
fe0f3db
 
cfd4139
fe0f3db
 
 
 
cfd4139
fe0f3db
d036d71
cfd4139
 
 
 
 
 
 
2d5e6ee
 
cfd4139
1678afb
 
b0e8abd
1678afb
a61cdb6
1678afb
 
 
2d5e6ee
 
cfd4139
1678afb
 
2d5e6ee
 
 
 
1678afb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe0f3db
1678afb
 
 
 
 
fe0f3db
b1bb2ef
 
 
 
 
 
 
 
 
 
 
 
 
8fc52b2
b1bb2ef
8fc52b2
fe0f3db
b1bb2ef
1678afb
 
b1bb2ef
1678afb
b1bb2ef
b3c7fc7
1678afb
 
 
 
 
 
b1bb2ef
b3c7fc7
1678afb
 
 
 
b1bb2ef
b0e8abd
b1bb2ef
8fc52b2
d036d71
8fc52b2
 
 
b0e8abd
8fc52b2
 
1678afb
8fc52b2
 
 
38697f1
8fc52b2
 
 
 
 
1678afb
8fc52b2
 
 
 
 
1678afb
c359068
1678afb
 
 
 
 
 
 
8fc52b2
 
 
 
 
 
 
 
 
1678afb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53b5f41
b1bb2ef
 
c359068
b1bb2ef
c359068
b1bb2ef
38697f1
 
b1bb2ef
 
 
38697f1
b1bb2ef
 
c359068
38697f1
 
 
 
b3c7fc7
8fc52b2
b3c7fc7
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# -*- coding: utf-8 -*-
import pickle
import pandas as pd
import streamlit as st
from scipy import stats

import plotly.express as px
import plotly.figure_factory as ff

import scipy
import numpy as np
from data_processing import load_data, process_data, get_monetary_dataframe, get_themes_per_year
from model import prepare_predictors, prepare_data, run_training, split, predict, features_importance, run_cv_training, automl_training


def _max_width_():
    max_width_str = f"max-width: 1500px;"
    st.markdown(
        f"""
    <style>
    .reportview-container .main .block-container{{
        {max_width_str}
    }}
    </style>    
    """,
        unsafe_allow_html=True,
    )


# force screen width
_max_width_()

st.title("Data Analysis 🌎 πŸ“ƒ")
st.write("by [Theolex](https://www.theolex.io/)")

# load and process data
data = load_data()
decisions, organizations, authorities = process_data(data)

st.sidebar.title("Authorities parameters")
authorities_country = st.sidebar.selectbox('Authority country', ['All', *authorities.country.unique()])

if authorities_country != 'All':
    select_auth = authorities[authorities.country == authorities_country].name.sort_values()
else:
    select_auth = authorities.name.sort_values()

authority = st.sidebar.selectbox('Authority', ['All', *select_auth])
min_year, max_year = st.sidebar.slider('Decisions year', min_value=2001, max_value=2021, value=(2008, 2021))

# apply filters
authority_filter = True
if authority != 'All':
    authority_filter = decisions.authorities_name.apply(lambda a: authority in a)
else:
    authority_filter = decisions.authorities_name.apply(lambda a: bool(set(select_auth) & set(a)))
year_filter = (decisions.year >= min_year) & (decisions.year <= max_year)
decision_scope = decisions[authority_filter & year_filter]

st.subheader("Dataset Description")

st.metric('Number of validated decisions linked to organisations (and not individuals)', decision_scope.shape[0])


st.metric('Decisions with monetary sanctions',
          decision_scope[decision_scope.monetary_sanction > 0].shape[0])

# explore monetary sanctions
monetary_decision = get_monetary_dataframe(decision_scope)

st.metric('Decisions with organizations that have published yearly revenues', sum(monetary_decision.has_revenues))

##
# Plot Graphs
##

with st.expander("Data exploration"):
    st.subheader("The organizations' sectors targeted by the sanctions: ")
    st.markdown("The graph shows the cumulated monetary sanction for the current filters")

    fig = px.treemap(monetary_decision,
                     path=['org_company_type'],
                     color='org_revenues',
                     color_continuous_scale='RdBu',
                     template="simple_white",
                     values='monetary_sanction',
                     width=1000, height=600)
    st.plotly_chart(fig)

    st.subheader("The organizations' regions targeted by the sanctions: ")
    st.markdown("The graph shows the cumulated monetary sanction for the current filters")
    fig = px.treemap(monetary_decision[~monetary_decision.org_continent.isnull()],
                     path=['org_continent', 'org_country'],
                     color_continuous_scale='RdBu',
                     template="simple_white",
                     values='monetary_sanction',
                     width=1000, height=600)
    st.plotly_chart(fig)

    st.subheader("Revenues vs monetary sanctions representation ")
    st.markdown("The graph shows the cumulated monetary sanction for the current filters")
    fig = px.scatter(monetary_decision,
                     x="org_revenues",
                     y="monetary_sanction",
                     log_x=True,
                     log_y=True,
                     template="simple_white",
                     color="same_country",
                     color_continuous_scale='RdBu',
                     hover_name="org_name",
                     width=1000, height=600)
    st.plotly_chart(fig)

    fig = px.scatter(monetary_decision[~monetary_decision.org_revenues.isnull()],
                     x="decision_date",
                     size="log10_monetary_sanction",
                     y="org_revenues",
                     log_y=True,
                     template="simple_white",
                     color="same_country",
                     hover_name="monetary_sanction",
                     width=1000, height=600)
    st.plotly_chart(fig)

    fig = px.histogram(monetary_decision, x="log10_monetary_sanction",
                       # y="log10_org_revenues",
                       color="same_country",
                       marginal="box",  # or violin, rug
                       template="simple_white",
                       width=1000, height=600, nbins=40, opacity=0.5,
                       hover_data=monetary_decision.columns)

    st.plotly_chart(fig)

    fig = px.histogram(monetary_decision, x="log10_monetary_sanction_rate",
                       # y="log10_org_revenues",
                       color="same_country",
                       marginal="box",  # or violin, rug
                       template="simple_white",
                       width=1000, height=600, nbins=40, opacity=0.5,
                       hover_data=monetary_decision.columns)

    st.plotly_chart(fig)

    p = scipy.stats.ks_2samp(monetary_decision[monetary_decision.same_country]['log10_monetary_sanction_rate'],
                             monetary_decision[~monetary_decision.same_country]['log10_monetary_sanction_rate']
                             , alternative='two-sided', mode='auto')

    st.metric(label="p-value", value=f"{round(p.pvalue, 2)}%")

    st.subheader("Sum of monetary sanctions over time ")
    st.markdown("The graph shows the cumulated monetary sanction per year for each violation theme")
    chart_data = get_themes_per_year(monetary_decision)
    fig = px.area(chart_data, x="year",
                  y="monetary_sanction",
                  color="violation_theme",
                  template="simple_white",
                  # groupnorm="fraction",
                  line_group="violation_theme",
                  width=1000, height=600)
    st.plotly_chart(fig)

##############################################
####
# build ML model
####
##############################################
st.title("Training phase")
col_num_all = ['log10_org_revenues',
               'time']
col_cat_all = ['authorities_country',
               'type',
               'violation_theme',
               'justice_type',
               'org_country',
               'org_continent',
               'same_country',
               'org_company_type']

st.sidebar.title("Training params")
col_num = st.sidebar.multiselect('Numeric variables',
                                 col_num_all, default=col_num_all)
col_cat = st.sidebar.multiselect('Categorical variables',
                                 col_cat_all, default=col_cat_all)
# train the model
predictors, target = prepare_data(monetary_decision, col_num, col_cat)
if st.button('Run training'):
    with st.expander("Training results"):
        # Study distribution
        st.write(f"dataset size: {monetary_decision.shape[0]}")
        st.markdown("Plot target distribution: log 10 of monetary sanctions")
        fig = ff.create_distplot([target], ['log 10 of monetary sanctions'], bin_size=0.05)
        fig.update_layout(width=1000,
                          template="simple_white",
                          height=600,
                          bargap=0.01)
        st.plotly_chart(fig)

        # Split data set
        predictors_train, predictors_test, target_train, target_test = split(predictors, target, test_size=0.05)
        st.subheader("Split dataset between training and test:")
        st.metric(label="Training size", value=predictors_train.shape[0])
        st.metric(label="Test size", value=predictors_test.shape[0])

        # Run cross validation
        st.subheader("Cross validation error")
        with st.spinner('Wait for it...'):
            #xgb_cv, best_params = run_cv_training(predictors_train, target_train)

            #st.line_chart(xgb_cv[[col for col in xgb_cv.columns if "mean" in col]])
            #st.subheader("Selected variables")
            #st.json(best_params)

            # Train final
            #xgb_model = run_training(predictors_train, target_train, best_params["params"], best_params["best_round"])

            xgb_model = automl_training(predictors_train, target_train)
            # save model to file
            pickle.dump(xgb_model, open("xgb_model.pickle.dat", "wb"))

            # Evaluate model error
            #target_train_predicted = predict(xgb_model, predictors_train)
            target_train_predicted = xgb_model.predict(predictors_train)
            training_bias = np.mean(target_train_predicted - target_train)
            st.metric(label="Training bias", value=training_bias)

            #target_test_predicted = predict(xgb_model, predictors_test)
            target_test_predicted = xgb_model.predict(predictors_test)
            test_errors = target_test_predicted - target_test
            test_bias = np.mean(test_errors)
            st.metric(label="Test bias", value=test_bias)

        fig = ff.create_distplot([test_errors], ['errors distribution'], bin_size=0.2)
        fig.update_layout(width=1000,
                          template="simple_white",
                          height=600,
                          bargap=0.01)
        st.plotly_chart(fig)

        st.subheader("Plot features importance for the trained model")
        print("predictors_train shape: ", predictors_train.columns)
        xgb_features_importance = pd.DataFrame([xgb_model.model.estimator.feature_importances_],
                                               columns=predictors_train.columns)
        print(xgb_features_importance)
        #st.dataframe(xgb_features_importance)

        # xgb_features_importance = features_importance(xgb_model)
        #
        fig = px.bar(xgb_features_importance.T,
                     orientation='h',
                     width=1000,
                     template="simple_white",
                     height=600,
                     )
        st.plotly_chart(fig)

        st.subheader("Plot predicted vs real")
        compare = pd.concat(
            [pd.DataFrame({'target': target_test, 'predicted': target_test_predicted, 'sample': 'test'}),
             pd.DataFrame({'target': target_train, 'predicted': target_train_predicted, 'sample': 'train'})])
        fig = px.scatter(
            compare,
            x='predicted',
            y='target',
            color='sample',
            marginal_y="violin",
            width=1000,
            template="simple_white",
            height=600,
            trendline="ols")

        st.plotly_chart(fig)

        naive_error_std = np.std(target_train - np.mean(target_train_predicted))
        model_error_std = np.std(target_train - target_train_predicted)

        st.metric(label="Naive error standard deviation", value=naive_error_std)
        st.metric(label="Model error standard deviation", value=model_error_std)

        corr_matrix = np.corrcoef(target_train, target_train_predicted)
        R_sq = corr_matrix[0, 1] ** 2
        st.metric(label="Explained variation thanks to model (R^2)", value=f"{round(100 * R_sq, 2)}%")

        naive_error_std = np.std(target_test - np.mean(target_test_predicted))
        model_error_std = np.std(target_test - target_test_predicted)

        st.metric(label="Naive error standard deviation", value=naive_error_std)
        st.metric(label="Model error standard deviation", value=model_error_std)

        corr_matrix = np.corrcoef(target_test, target_test_predicted)
        R_sq = corr_matrix[0, 1] ** 2
        st.metric(label="Explained variation thanks to model (R^2)", value=f"{round(100 * R_sq, 2)}%")

        st.subheader("Residuals & homoscedasticity")
        # st.metric(label="Explained variation thanks to model (R^2)", value=f"{round(100 * R_sq, 2)}%")

        print(stats.pearsonr(test_errors, target_test))

st.title("Organizations view")
prediction_model = pickle.load(open("xgb_model.pickle.dat", "rb"))
col1, _, _ = st.columns(3)
to_predict = {}
with col1:
    to_predict['log10_org_revenues'] = [np.log10(st.number_input('Yearly revenues', value=100000000))]
    to_predict['time'] = 0
    for col in col_cat:
        to_predict[col] = [st.selectbox(f'{col}', predictors[col].cat.categories)]

df_to_predict = prepare_predictors(pd.DataFrame.from_dict(to_predict), col_num, col_cat)
st.dataframe(df_to_predict)

if prediction_model:
    try:
        predicted = prediction_model.predict(df_to_predict)
        st.metric(label="Monetary sanction prediction", value=f"{'{:,.2f}'.format(10**(predicted[0]-3))} K$")
        print(predicted)
    except ValueError:
        st.subheader("You need to rerun training !")