Spaces:
Runtime error
Runtime error
change default date
Browse files- model.py +2 -2
- stream_app.py +6 -5
model.py
CHANGED
|
@@ -32,7 +32,7 @@ def split(predictors, target):
|
|
| 32 |
predictors_train, predictors_test, target_train, target_test = train_test_split(predictors,
|
| 33 |
target,
|
| 34 |
test_size=0.2,
|
| 35 |
-
random_state=
|
| 36 |
return predictors_train, predictors_test, target_train, target_test
|
| 37 |
|
| 38 |
|
|
@@ -50,7 +50,7 @@ def run_cv_training(predictors_train, target_train):
|
|
| 50 |
'subsample': 0.8,
|
| 51 |
'objective': 'reg:squarederror'}
|
| 52 |
cv_results = cv(dtrain=data_train, params=params, nfold=2,
|
| 53 |
-
num_boost_round=1000, early_stopping_rounds=3, metrics="rmse", as_pandas=True, seed=
|
| 54 |
best_value = cv_results['test-rmse-mean'].values[-1]
|
| 55 |
best_round = cv_results.index[-1]
|
| 56 |
xgb_csv.append(
|
|
|
|
| 32 |
predictors_train, predictors_test, target_train, target_test = train_test_split(predictors,
|
| 33 |
target,
|
| 34 |
test_size=0.2,
|
| 35 |
+
random_state=50)
|
| 36 |
return predictors_train, predictors_test, target_train, target_test
|
| 37 |
|
| 38 |
|
|
|
|
| 50 |
'subsample': 0.8,
|
| 51 |
'objective': 'reg:squarederror'}
|
| 52 |
cv_results = cv(dtrain=data_train, params=params, nfold=2,
|
| 53 |
+
num_boost_round=1000, early_stopping_rounds=3, metrics="rmse", as_pandas=True, seed=50)
|
| 54 |
best_value = cv_results['test-rmse-mean'].values[-1]
|
| 55 |
best_round = cv_results.index[-1]
|
| 56 |
xgb_csv.append(
|
stream_app.py
CHANGED
|
@@ -44,7 +44,7 @@ else:
|
|
| 44 |
select_auth = authorities.name.sort_values()
|
| 45 |
|
| 46 |
authority = st.sidebar.selectbox('Authority', ['All', *select_auth])
|
| 47 |
-
min_year, max_year = st.sidebar.slider('Decisions year', min_value=2001, max_value=2021, value=(
|
| 48 |
|
| 49 |
# apply filters
|
| 50 |
authority_filter = True
|
|
@@ -184,14 +184,15 @@ if st.button('Run training'):
|
|
| 184 |
st.metric(label="Training size", value=predictors_train.shape[0])
|
| 185 |
st.metric(label="Test size", value=predictors_test.shape[0])
|
| 186 |
|
| 187 |
-
#run cross validation
|
| 188 |
st.subheader("Cross validation error")
|
| 189 |
xgb_cv, best_params = run_cv_training(predictors_train, target_train)
|
| 190 |
-
|
| 191 |
-
st.json(best_params)
|
| 192 |
-
xgb_cv.to_csv('cv_results.csv')
|
| 193 |
st.line_chart(xgb_cv[[col for col in xgb_cv.columns if "mean" in col]])
|
|
|
|
|
|
|
| 194 |
|
|
|
|
| 195 |
xgb_model = run_training(predictors_train, target_train, best_params[1], best_params[2])
|
| 196 |
|
| 197 |
# evaluate model error
|
|
|
|
| 44 |
select_auth = authorities.name.sort_values()
|
| 45 |
|
| 46 |
authority = st.sidebar.selectbox('Authority', ['All', *select_auth])
|
| 47 |
+
min_year, max_year = st.sidebar.slider('Decisions year', min_value=2001, max_value=2021, value=(2008, 2021))
|
| 48 |
|
| 49 |
# apply filters
|
| 50 |
authority_filter = True
|
|
|
|
| 184 |
st.metric(label="Training size", value=predictors_train.shape[0])
|
| 185 |
st.metric(label="Test size", value=predictors_test.shape[0])
|
| 186 |
|
| 187 |
+
# run cross validation
|
| 188 |
st.subheader("Cross validation error")
|
| 189 |
xgb_cv, best_params = run_cv_training(predictors_train, target_train)
|
| 190 |
+
|
|
|
|
|
|
|
| 191 |
st.line_chart(xgb_cv[[col for col in xgb_cv.columns if "mean" in col]])
|
| 192 |
+
st.subheader("Selected variables")
|
| 193 |
+
st.json(best_params)
|
| 194 |
|
| 195 |
+
# train final model
|
| 196 |
xgb_model = run_training(predictors_train, target_train, best_params[1], best_params[2])
|
| 197 |
|
| 198 |
# evaluate model error
|