Spaces:
Runtime error
Runtime error
add traning
Browse files- data_processing.py +2 -0
- model.py +53 -0
- stream_app.py +120 -4
data_processing.py
CHANGED
|
@@ -82,6 +82,8 @@ def get_monetary_dataframe(decision_scope):
|
|
| 82 |
monetary_decision['log10_org_revenues'] = monetary_decision.org_revenues.apply(np.log10)
|
| 83 |
monetary_decision['log10_monetary_sanction'] = monetary_decision.monetary_sanction.apply(np.log10)
|
| 84 |
monetary_decision['same_country'] = (monetary_decision.org_country == monetary_decision.authorities_country)
|
|
|
|
|
|
|
| 85 |
return monetary_decision
|
| 86 |
|
| 87 |
|
|
|
|
| 82 |
monetary_decision['log10_org_revenues'] = monetary_decision.org_revenues.apply(np.log10)
|
| 83 |
monetary_decision['log10_monetary_sanction'] = monetary_decision.monetary_sanction.apply(np.log10)
|
| 84 |
monetary_decision['same_country'] = (monetary_decision.org_country == monetary_decision.authorities_country)
|
| 85 |
+
monetary_decision['monetary_sanction_rate'] = monetary_decision.monetary_sanction/monetary_decision.org_revenues
|
| 86 |
+
monetary_decision['log10_monetary_sanction_rate'] = monetary_decision.monetary_sanction_rate.apply(np.log10)
|
| 87 |
return monetary_decision
|
| 88 |
|
| 89 |
|
model.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import xgboost as xgb
|
| 4 |
+
from sklearn.model_selection import train_test_split
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def prepare_data(monetary_decision):
|
| 8 |
+
monetary_decision = monetary_decision.reset_index(drop=True)
|
| 9 |
+
time = round((monetary_decision.decision_date - monetary_decision.decision_date.min()) / np.timedelta64(1, "M"))
|
| 10 |
+
monetary_decision.loc[:, ('time')] = time
|
| 11 |
+
col_num = ['log10_org_revenues',
|
| 12 |
+
'time']
|
| 13 |
+
col_cat = ['authorities_country',
|
| 14 |
+
'type',
|
| 15 |
+
'violation_theme',
|
| 16 |
+
'justice_type',
|
| 17 |
+
'org_country',
|
| 18 |
+
'org_currency',
|
| 19 |
+
'org_continent',
|
| 20 |
+
'same_country',
|
| 21 |
+
'org_company_type']
|
| 22 |
+
predictors = monetary_decision[col_num + col_cat]
|
| 23 |
+
target = monetary_decision.log10_monetary_sanction
|
| 24 |
+
for col in col_cat:
|
| 25 |
+
predictors[col] = predictors[col].astype("category")
|
| 26 |
+
return predictors, target
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def split(predictors, target):
|
| 30 |
+
predictors_train, predictors_test, target_train, target_test = train_test_split(predictors,
|
| 31 |
+
target,
|
| 32 |
+
test_size=0.2,
|
| 33 |
+
random_state=42)
|
| 34 |
+
return predictors_train, predictors_test, target_train, target_test
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def run_training(predictors_train, predictors_test):
|
| 38 |
+
data_train = xgb.DMatrix(predictors_train, label=predictors_test, enable_categorical=True)
|
| 39 |
+
param = {'max_depth': 5,
|
| 40 |
+
'learning_rate': .2,
|
| 41 |
+
'colsample_bytree': 0.3,
|
| 42 |
+
'objective': 'reg:squarederror'}
|
| 43 |
+
num_round = 50
|
| 44 |
+
return xgb.train(param, data_train, num_round)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def predict(model, predictors):
|
| 48 |
+
data = xgb.DMatrix(predictors, enable_categorical=True)
|
| 49 |
+
return model.predict(data)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def features_importance(model):
|
| 53 |
+
return pd.Series(model.get_score(importance_type='gain')).sort_values()
|
stream_app.py
CHANGED
|
@@ -1,9 +1,14 @@
|
|
| 1 |
# -*- coding: utf-8 -*-
|
|
|
|
| 2 |
import streamlit as st
|
| 3 |
|
| 4 |
import plotly.express as px
|
|
|
|
| 5 |
|
|
|
|
|
|
|
| 6 |
from data_processing import load_data, process_data, get_monetary_dataframe, get_themes_per_year
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
def _max_width_():
|
|
@@ -30,12 +35,15 @@ st.write("by [Teolex](https://www.theolex.io/)")
|
|
| 30 |
data = load_data()
|
| 31 |
decisions, organizations, authorities = process_data(data)
|
| 32 |
|
| 33 |
-
st.sidebar.title("
|
| 34 |
-
authorities_country = st.sidebar.selectbox('Authority country', authorities.country.unique())
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
| 38 |
|
|
|
|
| 39 |
min_year, max_year = st.sidebar.slider('Decisions year', min_value=2001, max_value=2021, value=(2010, 2021))
|
| 40 |
|
| 41 |
# apply filters
|
|
@@ -90,6 +98,43 @@ fig = px.scatter(monetary_decision,
|
|
| 90 |
width=1000, height=600)
|
| 91 |
st.plotly_chart(fig)
|
| 92 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
st.subheader("Sum of monetary sanctions over time ")
|
| 94 |
st.markdown("The graph shows the cumulated monetary sanction per year for each violation theme")
|
| 95 |
chart_data = get_themes_per_year(monetary_decision)
|
|
@@ -101,3 +146,74 @@ fig = px.area(chart_data, x="year",
|
|
| 101 |
line_group="violation_theme",
|
| 102 |
width=1000, height=600)
|
| 103 |
st.plotly_chart(fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
+
import pandas as pd
|
| 3 |
import streamlit as st
|
| 4 |
|
| 5 |
import plotly.express as px
|
| 6 |
+
import plotly.figure_factory as ff
|
| 7 |
|
| 8 |
+
import scipy
|
| 9 |
+
import numpy as np
|
| 10 |
from data_processing import load_data, process_data, get_monetary_dataframe, get_themes_per_year
|
| 11 |
+
from model import prepare_data, run_training, split, predict, features_importance
|
| 12 |
|
| 13 |
|
| 14 |
def _max_width_():
|
|
|
|
| 35 |
data = load_data()
|
| 36 |
decisions, organizations, authorities = process_data(data)
|
| 37 |
|
| 38 |
+
st.sidebar.title("Authorities parameters")
|
| 39 |
+
authorities_country = st.sidebar.selectbox('Authority country', ['All', *authorities.country.unique()])
|
| 40 |
|
| 41 |
+
if authorities_country != 'All':
|
| 42 |
+
select_auth = authorities[authorities.country == authorities_country].name.sort_values()
|
| 43 |
+
else:
|
| 44 |
+
select_auth = authorities.name.sort_values()
|
| 45 |
|
| 46 |
+
authority = st.sidebar.selectbox('Authority', ['All', *select_auth])
|
| 47 |
min_year, max_year = st.sidebar.slider('Decisions year', min_value=2001, max_value=2021, value=(2010, 2021))
|
| 48 |
|
| 49 |
# apply filters
|
|
|
|
| 98 |
width=1000, height=600)
|
| 99 |
st.plotly_chart(fig)
|
| 100 |
|
| 101 |
+
fig = px.scatter(monetary_decision[~monetary_decision.org_revenues.isnull()],
|
| 102 |
+
x="decision_date",
|
| 103 |
+
size="log10_monetary_sanction",
|
| 104 |
+
y="org_revenues",
|
| 105 |
+
log_y=True,
|
| 106 |
+
template="simple_white",
|
| 107 |
+
color="same_country",
|
| 108 |
+
hover_name="monetary_sanction",
|
| 109 |
+
width=1000, height=600)
|
| 110 |
+
st.plotly_chart(fig)
|
| 111 |
+
|
| 112 |
+
fig = px.histogram(monetary_decision, x="log10_monetary_sanction",
|
| 113 |
+
# y="log10_org_revenues",
|
| 114 |
+
color="same_country",
|
| 115 |
+
marginal="box", # or violin, rug
|
| 116 |
+
template="simple_white",
|
| 117 |
+
width=1000, height=600, nbins=40, opacity=0.5,
|
| 118 |
+
hover_data=monetary_decision.columns)
|
| 119 |
+
|
| 120 |
+
st.plotly_chart(fig)
|
| 121 |
+
|
| 122 |
+
fig = px.histogram(monetary_decision, x="log10_monetary_sanction_rate",
|
| 123 |
+
# y="log10_org_revenues",
|
| 124 |
+
color="same_country",
|
| 125 |
+
marginal="box", # or violin, rug
|
| 126 |
+
template="simple_white",
|
| 127 |
+
width=1000, height=600, nbins=40, opacity=0.5,
|
| 128 |
+
hover_data=monetary_decision.columns)
|
| 129 |
+
|
| 130 |
+
st.plotly_chart(fig)
|
| 131 |
+
|
| 132 |
+
p = scipy.stats.ks_2samp(monetary_decision[monetary_decision.same_country]['log10_monetary_sanction_rate'],
|
| 133 |
+
monetary_decision[~monetary_decision.same_country]['log10_monetary_sanction_rate']
|
| 134 |
+
, alternative='two-sided', mode='auto')
|
| 135 |
+
|
| 136 |
+
st.metric(label="p-value", value=f"{round(p.pvalue, 2)}%")
|
| 137 |
+
|
| 138 |
st.subheader("Sum of monetary sanctions over time ")
|
| 139 |
st.markdown("The graph shows the cumulated monetary sanction per year for each violation theme")
|
| 140 |
chart_data = get_themes_per_year(monetary_decision)
|
|
|
|
| 146 |
line_group="violation_theme",
|
| 147 |
width=1000, height=600)
|
| 148 |
st.plotly_chart(fig)
|
| 149 |
+
|
| 150 |
+
st.sidebar.title("Organizations view")
|
| 151 |
+
|
| 152 |
+
col_x = ['log10_org_revenues', 'authorities_country', 'violation_theme', 'org_country', 'org_company_type']
|
| 153 |
+
|
| 154 |
+
predictors, target = prepare_data(monetary_decision)
|
| 155 |
+
|
| 156 |
+
st.title("Training phase")
|
| 157 |
+
st.markdown("Plot taget distribution: log 10 of monetary sanctions")
|
| 158 |
+
fig = ff.create_distplot([target], [' log 10 of monetary sanctions'], bin_size=0.1)
|
| 159 |
+
fig.update_layout(width=1000,
|
| 160 |
+
template="simple_white",
|
| 161 |
+
height=600,
|
| 162 |
+
bargap=0.01)
|
| 163 |
+
st.plotly_chart(fig)
|
| 164 |
+
|
| 165 |
+
# split data set
|
| 166 |
+
predictors_train, predictors_test, target_train, target_test = split(predictors, target)
|
| 167 |
+
|
| 168 |
+
# train the model
|
| 169 |
+
xgb_model = run_training(predictors_train, target_train)
|
| 170 |
+
|
| 171 |
+
# evaluate model error
|
| 172 |
+
target_train_predicted = predict(xgb_model, predictors_train)
|
| 173 |
+
training_bias = np.mean(target_train_predicted - target_train)
|
| 174 |
+
st.metric(label="Training bias", value=training_bias)
|
| 175 |
+
|
| 176 |
+
target_test_predicted = predict(xgb_model, predictors_test)
|
| 177 |
+
test_errors = target_test_predicted - target_test
|
| 178 |
+
test_bias = np.mean(test_errors)
|
| 179 |
+
st.metric(label="Test bias", value=test_bias)
|
| 180 |
+
|
| 181 |
+
fig = ff.create_distplot([test_errors], ['errors distribution'], bin_size=0.1)
|
| 182 |
+
fig.update_layout(width=1000,
|
| 183 |
+
template="simple_white",
|
| 184 |
+
height=600,
|
| 185 |
+
bargap=0.01)
|
| 186 |
+
st.plotly_chart(fig)
|
| 187 |
+
|
| 188 |
+
st.subheader("Plot features importance for the trained model")
|
| 189 |
+
xgb_features_importance = features_importance(xgb_model)
|
| 190 |
+
|
| 191 |
+
fig = px.bar(xgb_features_importance,
|
| 192 |
+
orientation='h',
|
| 193 |
+
width=1000,
|
| 194 |
+
template="simple_white",
|
| 195 |
+
height=600,
|
| 196 |
+
)
|
| 197 |
+
st.plotly_chart(fig)
|
| 198 |
+
|
| 199 |
+
st.subheader("Plot predicted vs real")
|
| 200 |
+
import plotly.graph_objs as go
|
| 201 |
+
|
| 202 |
+
compare = pd.concat([pd.DataFrame({'target': target_test, 'predicted': target_test_predicted, 'sample': 'test'}),
|
| 203 |
+
pd.DataFrame({'target': target_train, 'predicted': target_train_predicted, 'sample': 'train'})])
|
| 204 |
+
fig = px.scatter(
|
| 205 |
+
compare,
|
| 206 |
+
x='predicted',
|
| 207 |
+
y='target',
|
| 208 |
+
color='sample',
|
| 209 |
+
marginal_y="violin",
|
| 210 |
+
width=1000,
|
| 211 |
+
template="simple_white",
|
| 212 |
+
height=600,
|
| 213 |
+
trendline="ols")
|
| 214 |
+
|
| 215 |
+
st.plotly_chart(fig)
|
| 216 |
+
|
| 217 |
+
sample_revenues = st.sidebar.number_input('Yearly revenues', value=1000000)
|
| 218 |
+
authority = st.sidebar.selectbox('Organization country', predictors.org_country.cat.categories)
|
| 219 |
+
authority = st.sidebar.selectbox('Organization activity', predictors.org_company_type.cat.categories)
|