Macropodus's picture
using marco-correct
391e575 verified
raw
history blame
2.24 kB
# !/usr/bin/python
# -*- coding: utf-8 -*-
# @time : 2021/2/29 21:41
# @author : Mo
# @function: transformers直接加载bert类模型测试
import traceback
import time
import sys
import os
os.environ["MACRO_CORRECT_FLAG_CSC_TOKEN"] = "1"
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ["USE_TORCH"] = "1"
from macro_correct.pytorch_textcorrection.tcTools import cut_sent_by_stay
from macro_correct import correct_basic
from macro_correct import correct_long
from macro_correct import correct
import gradio as gr
# pretrained_model_name_or_path = "shibing624/macbert4csc-base-chinese"
pretrained_model_name_or_path = "Macadam/macbert4mdcspell_v2"
# pretrained_model_name_or_path = "Macropodus/macbert4mdcspell_v1"
# pretrained_model_name_or_path = "Macropodus/macbert4csc_v1"
# pretrained_model_name_or_path = "Macropodus/macbert4csc_v2"
# pretrained_model_name_or_path = "Macropodus/bert4csc_v1"
# device = torch.device("cpu")
# device = torch.device("cuda")
def macro_correct(text):
print(text)
text_csc = correct_long(text)
print(text_csc)
print("#"*128)
text_out = ""
for t in text_csc:
for k, v in t.items():
text_out += f"{k}: {v}\n"
text_out += "\n"
return text_out
if __name__ == '__main__':
print(macro_correct('少先队员因该为老人让坐'))
examples = [
"机七学习是人工智能领遇最能体现智能的一个分知",
"我是练习时长两念半的鸽仁练习生蔡徐坤",
"真麻烦你了。希望你们好好的跳无",
"他法语说的很好,的语也不错",
"遇到一位很棒的奴生跟我疗天",
"我们为这个目标努力不解",
]
gr.Interface(
macro_correct,
inputs='text',
outputs='text',
title="Chinese Spelling Correction Model Macropodus/macbert4csc_v2",
description="Copy or input error Chinese text. Submit and the machine will correct text.",
article="Link to <a href='https://github.com/yongzhuo/macro-correct' style='color:blue;' target='_blank\'>Github REPO: macro-correct</a>",
examples=examples
).launch()
# ).launch(server_name="0.0.0.0", server_port=8066, share=False, debug=True)