Spaces:
Running
Running
using marco-correct
Browse files
app.py
CHANGED
|
@@ -1,271 +1,68 @@
|
|
|
|
|
| 1 |
# -*- coding: utf-8 -*-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
import gradio as gr
|
| 9 |
-
import opencc
|
| 10 |
-
import torch
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
pretrained_model_name_or_path = "Macropodus/macbert4mdcspell_v2"
|
| 14 |
-
tokenizer = BertTokenizer.from_pretrained(pretrained_model_name_or_path)
|
| 15 |
-
model = BertForMaskedLM.from_pretrained(pretrained_model_name_or_path)
|
| 16 |
-
vocab = tokenizer.vocab
|
| 17 |
-
|
| 18 |
|
| 19 |
-
# from modelscope import AutoTokenizer, AutoModelForMaskedLM
|
| 20 |
-
# pretrained_model_name_or_path = "Macadam/macbert4mdcspell_v2"
|
| 21 |
-
# tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path)
|
| 22 |
-
# model = AutoModelForMaskedLM.from_pretrained(pretrained_model_name_or_path)
|
| 23 |
-
# vocab = tokenizer.vocab
|
| 24 |
-
converter_t2s = opencc.OpenCC("t2s.json")
|
| 25 |
-
context = converter_t2s.convert("汉字") # 漢字
|
| 26 |
-
PUN_EN2ZH_DICT = {",": ",", ";": ";", "!": "!", "?": "?", ":": ":", "(": "(", ")": ")", "_": "—"}
|
| 27 |
-
PUN_BERT_DICT = {"“":'"', "”":'"', "‘":'"', "’":'"', "—": "_", "——": "__"}
|
| 28 |
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
-
def flag_total_chinese(text):
|
| 35 |
-
"""
|
| 36 |
-
judge is total chinese or not, 判断是不是全是中文
|
| 37 |
-
Args:
|
| 38 |
-
text: str, eg. "macadam, 碎石路"
|
| 39 |
-
Returns:
|
| 40 |
-
bool, True or False
|
| 41 |
-
"""
|
| 42 |
-
for word in text:
|
| 43 |
-
if not "\u4e00" <= word <= "\u9fa5":
|
| 44 |
-
return False
|
| 45 |
-
return True
|
| 46 |
|
| 47 |
-
|
| 48 |
-
"""Get errors between corrected text and origin text
|
| 49 |
-
code from: https://github.com/shibing624/pycorrector
|
| 50 |
-
"""
|
| 51 |
-
new_corrected_text = ""
|
| 52 |
-
errors = []
|
| 53 |
-
i, j = 0, 0
|
| 54 |
-
unk_tokens = unk_tokens or [' ', '“', '”', '‘', '’', '琊', '\n', '…', '擤', '\t', '玕', '']
|
| 55 |
-
while i < len(origin_text) and j < len(corrected_text):
|
| 56 |
-
if origin_text[i] in unk_tokens or origin_text[i] not in know_tokens:
|
| 57 |
-
new_corrected_text += origin_text[i]
|
| 58 |
-
i += 1
|
| 59 |
-
elif corrected_text[j] in unk_tokens:
|
| 60 |
-
new_corrected_text += corrected_text[j]
|
| 61 |
-
j += 1
|
| 62 |
-
# Deal with Chinese characters
|
| 63 |
-
elif flag_total_chinese(origin_text[i]) and flag_total_chinese(corrected_text[j]):
|
| 64 |
-
# If the two characters are the same, then the two pointers move forward together
|
| 65 |
-
if origin_text[i] == corrected_text[j]:
|
| 66 |
-
new_corrected_text += corrected_text[j]
|
| 67 |
-
i += 1
|
| 68 |
-
j += 1
|
| 69 |
-
else:
|
| 70 |
-
# Check for insertion errors
|
| 71 |
-
if j + 1 < len(corrected_text) and origin_text[i] == corrected_text[j + 1]:
|
| 72 |
-
errors.append(('', corrected_text[j], j))
|
| 73 |
-
new_corrected_text += corrected_text[j]
|
| 74 |
-
j += 1
|
| 75 |
-
# Check for deletion errors
|
| 76 |
-
elif i + 1 < len(origin_text) and origin_text[i + 1] == corrected_text[j]:
|
| 77 |
-
errors.append((origin_text[i], '', i))
|
| 78 |
-
i += 1
|
| 79 |
-
# Check for replacement errors
|
| 80 |
-
else:
|
| 81 |
-
errors.append((origin_text[i], corrected_text[j], i))
|
| 82 |
-
new_corrected_text += corrected_text[j]
|
| 83 |
-
i += 1
|
| 84 |
-
j += 1
|
| 85 |
-
else:
|
| 86 |
-
new_corrected_text += origin_text[i]
|
| 87 |
-
if origin_text[i] == corrected_text[j]:
|
| 88 |
-
j += 1
|
| 89 |
-
i += 1
|
| 90 |
-
errors = sorted(errors, key=operator.itemgetter(2))
|
| 91 |
-
return new_corrected_text, errors
|
| 92 |
-
|
| 93 |
-
def get_errors_from_same_length(corrected_text, origin_text, unk_tokens=[], know_tokens=[]):
|
| 94 |
-
"""Get new corrected text and errors between corrected text and origin text
|
| 95 |
-
code from: https://github.com/shibing624/pycorrector
|
| 96 |
-
"""
|
| 97 |
-
errors = []
|
| 98 |
-
unk_tokens = unk_tokens or [' ', '“', '”', '‘', '’', '琊', '\n', '…', '擤', '\t', '玕', '', ',']
|
| 99 |
-
|
| 100 |
-
for i, ori_char in enumerate(origin_text):
|
| 101 |
-
if i >= len(corrected_text):
|
| 102 |
-
continue
|
| 103 |
-
if ori_char in unk_tokens or ori_char not in know_tokens:
|
| 104 |
-
# deal with unk word
|
| 105 |
-
corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:]
|
| 106 |
-
continue
|
| 107 |
-
if ori_char != corrected_text[i]:
|
| 108 |
-
if not flag_total_chinese(ori_char):
|
| 109 |
-
# pass not chinese char
|
| 110 |
-
corrected_text = corrected_text[:i] + ori_char + corrected_text[i + 1:]
|
| 111 |
-
continue
|
| 112 |
-
if not flag_total_chinese(corrected_text[i]):
|
| 113 |
-
corrected_text = corrected_text[:i] + corrected_text[i + 1:]
|
| 114 |
-
continue
|
| 115 |
-
errors.append([ori_char, corrected_text[i], i])
|
| 116 |
-
errors = sorted(errors, key=operator.itemgetter(2))
|
| 117 |
-
return corrected_text, errors
|
| 118 |
-
|
| 119 |
-
_text = tokenizer.decode(torch.argmax(outputs.logits[0], dim=-1), skip_special_tokens=True).replace(' ', '')
|
| 120 |
-
corrected_text = _text[:len(text)]
|
| 121 |
-
print("#" * 128)
|
| 122 |
print(text)
|
| 123 |
-
|
| 124 |
-
print(
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
return line_dict
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
def transfor_english_symbol_to_chinese(text, kv_dict=PUN_EN2ZH_DICT):
|
| 136 |
-
""" 将英文标点符号转化为中文标点符号, 位数不能变防止pos_id变化 """
|
| 137 |
-
for k, v in kv_dict.items(): # 英文替换
|
| 138 |
-
text = text.replace(k, v)
|
| 139 |
-
if text and text[-1] == ".": # 最后一个字符是英文.
|
| 140 |
-
text = text[:-1] + "。"
|
| 141 |
-
|
| 142 |
-
if text and "\"" in text: # 双引号
|
| 143 |
-
index_list = [i.start() for i in re.finditer("\"", text)]
|
| 144 |
-
if index_list:
|
| 145 |
-
for idx, index in enumerate(index_list):
|
| 146 |
-
symbol = "“" if idx % 2 == 0 else "”"
|
| 147 |
-
text = text[:index] + symbol + text[index + 1:]
|
| 148 |
-
|
| 149 |
-
if text and "'" in text: # 单引号
|
| 150 |
-
index_list = [i.start() for i in re.finditer("'", text)]
|
| 151 |
-
if index_list:
|
| 152 |
-
for idx, index in enumerate(index_list):
|
| 153 |
-
symbol = "‘" if idx % 2 == 0 else "’"
|
| 154 |
-
text = text[:index] + symbol + text[index + 1:]
|
| 155 |
-
return text
|
| 156 |
-
def cut_sent_by_stay(text, return_length=True, add_semicolon=False):
|
| 157 |
-
""" 分句但是保存原标点符号 """
|
| 158 |
-
if add_semicolon:
|
| 159 |
-
text_sp = re.split(r"!”|?”|。”|……”|”!|”?|”。|”……|》。|)。|;|!|?|。|…|\!|\?", text)
|
| 160 |
-
conn_symbol = ";!?。…”;!?》)\n"
|
| 161 |
-
else:
|
| 162 |
-
text_sp = re.split(r"!”|?”|。”|……”|”!|”?|”。|”……|》。|)。|!|?|。|…|\!|\?", text)
|
| 163 |
-
conn_symbol = "!?。…”!?》)\n"
|
| 164 |
-
text_length_s = []
|
| 165 |
-
text_cut = []
|
| 166 |
-
len_text = len(text) - 1
|
| 167 |
-
# signal_symbol = "—”>;?…)‘《’(·》“~,、!。:<"
|
| 168 |
-
len_global = 0
|
| 169 |
-
for idx, text_sp_i in enumerate(text_sp):
|
| 170 |
-
text_cut_idx = text_sp[idx]
|
| 171 |
-
len_global_before = copy.deepcopy(len_global)
|
| 172 |
-
len_global += len(text_sp_i)
|
| 173 |
-
while True:
|
| 174 |
-
if len_global <= len_text and text[len_global] in conn_symbol:
|
| 175 |
-
text_cut_idx += text[len_global]
|
| 176 |
-
else:
|
| 177 |
-
# len_global += 1
|
| 178 |
-
if text_cut_idx:
|
| 179 |
-
text_length_s.append([len_global_before, len_global])
|
| 180 |
-
text_cut.append(text_cut_idx)
|
| 181 |
-
break
|
| 182 |
-
len_global += 1
|
| 183 |
-
if return_length:
|
| 184 |
-
return text_cut, text_length_s
|
| 185 |
-
return text_cut
|
| 186 |
-
def transfor_bert_unk_pun_to_know(text, kv_dict=PUN_BERT_DICT):
|
| 187 |
-
""" 将英文标点符号转化为中文标点符号, 位数不能变防止pos_id变化 """
|
| 188 |
-
for k, v in kv_dict.items(): # 英文替换
|
| 189 |
-
text = text.replace(k, v)
|
| 190 |
-
return text
|
| 191 |
-
def tradition_to_simple(text):
|
| 192 |
-
""" 繁体到简体 """
|
| 193 |
-
return converter_t2s.convert(text)
|
| 194 |
-
def string_q2b(ustring):
|
| 195 |
-
"""把字符串全角转半角"""
|
| 196 |
-
return "".join([q2b(uchar) for uchar in ustring])
|
| 197 |
-
def q2b(uchar):
|
| 198 |
-
"""全角转半角"""
|
| 199 |
-
inside_code = ord(uchar)
|
| 200 |
-
if inside_code == 0x3000:
|
| 201 |
-
inside_code = 0x0020
|
| 202 |
-
else:
|
| 203 |
-
inside_code -= 0xfee0
|
| 204 |
-
if inside_code < 0x0020 or inside_code > 0x7e: # 转完之后不是半角字符返回原来的字符
|
| 205 |
-
return uchar
|
| 206 |
-
return chr(inside_code)
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
def func_macro_correct_long(text):
|
| 210 |
-
""" 长句 """
|
| 211 |
-
texts, length = cut_sent_by_stay(text, return_length=True, add_semicolon=True)
|
| 212 |
-
text_correct = ""
|
| 213 |
-
errors_new = []
|
| 214 |
-
for idx, text in enumerate(texts):
|
| 215 |
-
# 前处理
|
| 216 |
-
text = transfor_english_symbol_to_chinese(text)
|
| 217 |
-
text = string_q2b(text)
|
| 218 |
-
text = tradition_to_simple(text)
|
| 219 |
-
text = transfor_bert_unk_pun_to_know(text)
|
| 220 |
-
|
| 221 |
-
text_out = func_macro_correct(text)
|
| 222 |
-
source = text_out.get("source")
|
| 223 |
-
target = text_out.get("target")
|
| 224 |
-
errors = text_out.get("errors")
|
| 225 |
-
text_correct += target
|
| 226 |
-
for error in errors:
|
| 227 |
-
if not error[0].strip() or not error[1].strip():
|
| 228 |
-
continue
|
| 229 |
-
pos = length[idx][0] + error[-1]
|
| 230 |
-
error_1 = [error[0], error[1], pos]
|
| 231 |
-
errors_new.append(error_1)
|
| 232 |
-
return text_correct + '\n' + str(errors_new)
|
| 233 |
|
| 234 |
|
| 235 |
if __name__ == '__main__':
|
| 236 |
-
|
| 237 |
-
emer 发布于 2025-7-3 18:20 阅读:73
|
| 238 |
-
|
| 239 |
-
最近网购遇到件恼火的事。我在网店看中件羽戎服,店家保正是正品,还承诺七天无里由退换。收到货后却发现袖口有开线,更糟的是拉链老是卡住。
|
| 240 |
-
|
| 241 |
-
联系客服时,对方态度敷衔,先说让我自行缝补,后又说要扣除运废才给退。我在评沦区如实描述经历,结果发现好多消废者都有类似遭遇。
|
| 242 |
-
|
| 243 |
-
这次购物让我明白,不能光看店家的宣全,要多查考真实评价。现在我已经学精了,下单前总会反复合对商品信息。
|
| 244 |
-
网购的烦恼发布于2025-7-310期阅读:最近网购遇到件恼火的事。我在网店看中件羽绒服,店家保证是正品,还承诺七天无理由退换。收到货后却发现袖口有开线,更糟的是拉链老是卡住。联系客服时,对方态度敷衍,先说让我自行缝补,后又说要扣除运废才给退。我在评论区如实描述经历,结果发现好多消废者都有类似遭遇。这次购物让我明白,不能光看店家的宣全,要多查考真实评价。现在我已经学精了,下单前总会反复核对商品信息。
|
| 245 |
-
网购的烦恼e发布于2025-7-3期期阅读:最近网购遇到件恼火的事。我在网店看中件羽绒服,店家保证是正品,还承诺七天无理由退换。收到货后却发现袖口有开线,更糟的是拉链老是卡住。联系客服时,对方态度敷衍,先说让我自行缝补,后又说要扣除运废才给退。我在评论区如实描述经历,结果发现好多消废者都有类似遭遇。这次购物让我明白,不能光看店家的宣全,要多查考真实评价。现在我已经学精了,下单前总会反复核对商品信息。网购的烦恼发布于2025-7-310期阅读:最近网购遇到件恼火的事。我在网店看中件羽绒服,店家保证是正品,还承诺七天无理由退换。收到货后却发现袖口有开线,更糟的是拉链老是卡住。联系客服时,对方态度敷衍,先说让我自行缝补,后又说要扣除运废才给退。我在评论区如实描述经历,结果发现好多消废者都有类似遭遇。这次购物让我明白,不能光看店家的宣全,要多查考真实评价。现在我已经学精了,下单前总会反复核对商品信息。"""
|
| 246 |
-
print(func_macro_correct_long(text))
|
| 247 |
|
| 248 |
examples = [
|
| 249 |
-
"夫谷之雨,犹复云之亦从的起,因与疾风俱飘,参于天,集于的。",
|
| 250 |
"机七学习是人工智能领遇最能体现智能的一个分知",
|
| 251 |
-
'他们的吵翻很不错,再说他们做的咖喱鸡也好吃',
|
| 252 |
-
"抗疫路上,除了提心吊胆也有难的得欢笑。",
|
| 253 |
"我是练习时长两念半的鸽仁练习生蔡徐坤",
|
| 254 |
-
"
|
| 255 |
-
"得府许我立庙于此,故请君移去尔。",
|
| 256 |
"他法语说的很好,的语也不错",
|
| 257 |
"遇到一位很棒的奴生跟我疗天",
|
| 258 |
-
"五年级得数学,我考的很差。",
|
| 259 |
"我们为这个目标努力不解",
|
| 260 |
-
'今天兴情很好',
|
| 261 |
]
|
| 262 |
-
|
| 263 |
gr.Interface(
|
| 264 |
-
|
| 265 |
inputs='text',
|
| 266 |
outputs='text',
|
| 267 |
-
title="Chinese Spelling Correction Model Macropodus/
|
| 268 |
description="Copy or input error Chinese text. Submit and the machine will correct text.",
|
| 269 |
article="Link to <a href='https://github.com/yongzhuo/macro-correct' style='color:blue;' target='_blank\'>Github REPO: macro-correct</a>",
|
| 270 |
examples=examples
|
| 271 |
-
).launch()
|
|
|
|
|
|
|
|
|
| 1 |
+
# !/usr/bin/python
|
| 2 |
# -*- coding: utf-8 -*-
|
| 3 |
+
# @time : 2021/2/29 21:41
|
| 4 |
+
# @author : Mo
|
| 5 |
+
# @function: transformers直接加载bert类模型测试
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
import traceback
|
| 9 |
+
import time
|
| 10 |
+
import sys
|
| 11 |
+
import os
|
| 12 |
+
os.environ["MACRO_CORRECT_FLAG_CSC_TOKEN"] = "1"
|
| 13 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
| 14 |
+
os.environ["USE_TORCH"] = "1"
|
| 15 |
+
|
| 16 |
+
from macro_correct.pytorch_textcorrection.tcTools import cut_sent_by_stay
|
| 17 |
+
from macro_correct import correct_basic
|
| 18 |
+
from macro_correct import correct_long
|
| 19 |
+
from macro_correct import correct
|
| 20 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
|
| 24 |
+
# pretrained_model_name_or_path = "shibing624/macbert4csc-base-chinese"
|
| 25 |
+
pretrained_model_name_or_path = "Macadam/macbert4mdcspell_v2"
|
| 26 |
+
# pretrained_model_name_or_path = "Macropodus/macbert4mdcspell_v1"
|
| 27 |
+
# pretrained_model_name_or_path = "Macropodus/macbert4csc_v1"
|
| 28 |
+
# pretrained_model_name_or_path = "Macropodus/macbert4csc_v2"
|
| 29 |
+
# pretrained_model_name_or_path = "Macropodus/bert4csc_v1"
|
| 30 |
+
# device = torch.device("cpu")
|
| 31 |
+
# device = torch.device("cuda")
|
| 32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
def macro_correct(text):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
print(text)
|
| 36 |
+
text_csc = correct_long(text)
|
| 37 |
+
print(text_csc)
|
| 38 |
+
print("#"*128)
|
| 39 |
+
text_out = ""
|
| 40 |
+
for t in text_csc:
|
| 41 |
+
for k, v in t.items():
|
| 42 |
+
text_out += f"{k}: {v}\n"
|
| 43 |
+
text_out += "\n"
|
| 44 |
+
return text_out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
|
| 47 |
if __name__ == '__main__':
|
| 48 |
+
print(macro_correct('少先队员因该为老人让坐'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
examples = [
|
|
|
|
| 51 |
"机七学习是人工智能领遇最能体现智能的一个分知",
|
|
|
|
|
|
|
| 52 |
"我是练习时长两念半的鸽仁练习生蔡徐坤",
|
| 53 |
+
"真麻烦你了。希望你们好好的跳无",
|
|
|
|
| 54 |
"他法语说的很好,的语也不错",
|
| 55 |
"遇到一位很棒的奴生跟我疗天",
|
|
|
|
| 56 |
"我们为这个目标努力不解",
|
|
|
|
| 57 |
]
|
|
|
|
| 58 |
gr.Interface(
|
| 59 |
+
macro_correct,
|
| 60 |
inputs='text',
|
| 61 |
outputs='text',
|
| 62 |
+
title="Chinese Spelling Correction Model Macropodus/macbert4csc_v2",
|
| 63 |
description="Copy or input error Chinese text. Submit and the machine will correct text.",
|
| 64 |
article="Link to <a href='https://github.com/yongzhuo/macro-correct' style='color:blue;' target='_blank\'>Github REPO: macro-correct</a>",
|
| 65 |
examples=examples
|
| 66 |
+
).launch()
|
| 67 |
+
# ).launch(server_name="0.0.0.0", server_port=8066, share=False, debug=True)
|
| 68 |
+
|