# !/usr/bin/python # -*- coding: utf-8 -*- # @time : 2021/2/29 21:41 # @author : Mo # @function: transformers直接加载bert类模型测试 import traceback import time import sys import os os.environ["MACRO_CORRECT_FLAG_CSC_TOKEN"] = "1" os.environ["CUDA_VISIBLE_DEVICES"] = "-1" os.environ["USE_TORCH"] = "1" from macro_correct.pytorch_textcorrection.tcTools import cut_sent_by_stay from macro_correct import correct_basic from macro_correct import correct_long from macro_correct import correct import gradio as gr # pretrained_model_name_or_path = "shibing624/macbert4csc-base-chinese" pretrained_model_name_or_path = "Macadam/macbert4mdcspell_v2" # pretrained_model_name_or_path = "Macropodus/macbert4mdcspell_v1" # pretrained_model_name_or_path = "Macropodus/macbert4csc_v1" # pretrained_model_name_or_path = "Macropodus/macbert4csc_v2" # pretrained_model_name_or_path = "Macropodus/bert4csc_v1" # device = torch.device("cpu") # device = torch.device("cuda") def macro_correct(text): print(text) text_csc = correct_long(text) print(text_csc) print("#"*128) text_out = "" for t in text_csc: for k, v in t.items(): text_out += f"{k}: {v}\n" text_out += "\n" return text_out if __name__ == '__main__': print(macro_correct('少先队员因该为老人让坐')) examples = [ "机七学习是人工智能领遇最能体现智能的一个分知", "我是练习时长两念半的鸽仁练习生蔡徐坤", "真麻烦你了。希望你们好好的跳无", "他法语说的很好,的语也不错", "遇到一位很棒的奴生跟我疗天", "我们为这个目标努力不解", ] gr.Interface( macro_correct, inputs='text', outputs='text', title="Chinese Spelling Correction Model Macropodus/macbert4csc_v2", description="Copy or input error Chinese text. Submit and the machine will correct text.", article="Link to Github REPO: macro-correct", examples=examples ).launch() # ).launch(server_name="0.0.0.0", server_port=8066, share=False, debug=True)