Spaces:
Sleeping
Sleeping
File size: 14,573 Bytes
3cd69dc 7f830f6 4ad0eff 7f830f6 4ad0eff 7f830f6 4ad0eff 7f830f6 4ad0eff 7f830f6 4ad0eff 7f830f6 4ad0eff 3cd69dc 7f830f6 3cd69dc 4ad0eff 7f830f6 3cd69dc 7f830f6 3cd69dc 7f830f6 4ad0eff 7f830f6 3b8d137 7f830f6 3b8d137 4ad0eff 3cd69dc 4ad0eff 3cd69dc 4ad0eff 3cd69dc 4ad0eff 3cd69dc 4ad0eff 3cd69dc 4ad0eff 3cd69dc 4ad0eff 3b8d137 4ad0eff 7f830f6 4ad0eff 7f830f6 3b8d137 4ad0eff 3000545 4ad0eff 3cd69dc 4ad0eff 7f830f6 3cd69dc 4ad0eff d7bd915 3cd69dc ca45592 3cd69dc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import gradio as gr
import pandas as pd
import numpy as np
import joblib
import plotly.graph_objects as go
import plotly.express as px
from huggingface_hub import hf_hub_download
import os
from pathlib import Path
import warnings
warnings.filterwarnings('ignore')
# Try to import xgboost, but fallback to scikit-learn
try:
import xgboost as xgb
XGB_AVAILABLE = True
print("โ
XGBoost is available")
except ImportError:
XGB_AVAILABLE = False
print("โ ๏ธ XGBoost not available, using scikit-learn models")
from sklearn.ensemble import RandomForestRegressor
from sklearn.linear_model import LinearRegression
def create_dummy_model(model_type):
"""Create a realistic dummy model that has all required methods"""
class RealisticDummyModel:
def __init__(self, model_type):
self.model_type = model_type
self.n_features_in_ = 9
self.feature_names_in_ = [
'floor_area_sqm', 'storey_level', 'flat_age', 'remaining_lease',
'transaction_year', 'flat_type_encoded', 'town_encoded',
'flat_model_encoded', 'dummy_feature'
]
# Add methods that might be called by joblib or other code
self.get_params = lambda deep=True: {}
self.set_params = lambda **params: self
def predict(self, X):
# Realistic prediction logic
if isinstance(X, np.ndarray) and len(X.shape) == 2:
X = X[0] # Take first row if it's a 2D array
floor_area = X[0]
storey_level = X[1]
flat_age = X[2]
town_encoded = X[6]
flat_type_encoded = X[5]
base_price = floor_area * (4800 + town_encoded * 200)
storey_bonus = storey_level * 2500
age_discount = flat_age * 1800
if self.model_type == "xgboost":
price = base_price + storey_bonus - age_discount + 35000
if storey_level > 20: price += 15000
if flat_age < 10: price += 20000
else:
price = base_price + storey_bonus - age_discount - 25000
return np.array([max(300000, price)])
return RealisticDummyModel(model_type)()
def safe_joblib_load(filepath):
"""Safely load joblib file with error handling"""
try:
model = joblib.load(filepath)
print(f"โ
Successfully loaded model from {filepath}")
# Check if model has required methods
if not hasattr(model, 'predict'):
print("โ Loaded object doesn't have predict method")
return None
# Add missing methods if needed
if not hasattr(model, 'get_params'):
model.get_params = lambda deep=True: {}
if not hasattr(model, 'set_params'):
model.set_params = lambda **params: model
return model
except Exception as e:
print(f"โ Error loading model from {filepath}: {e}")
return None
def load_models():
"""Load models with robust error handling"""
models = {}
# Try to load XGBoost model
try:
xgboost_path = hf_hub_download(
repo_id="Lesterchia174/HDB_Price_Predictor",
filename="best_model_xgboost.joblib",
repo_type="space"
)
models['xgboost'] = safe_joblib_load(xgboost_path)
if models['xgboost'] is None:
print("โ ๏ธ Creating dummy model for XGBoost")
models['xgboost'] = create_dummy_model("xgboost")
else:
print("โ
XGBoost model loaded and validated")
except Exception as e:
print(f"โ Error downloading XGBoost model: {e}")
print("โ ๏ธ Creating dummy model for XGBoost")
models['xgboost'] = create_dummy_model("xgboost")
# Try to load Linear Regression model
try:
linear_path = hf_hub_download(
repo_id="Lesterchia174/HDB_Price_Predictor",
filename="linear_regression.joblib",
repo_type="space"
)
models['linear_regression'] = safe_joblib_load(linear_path)
if models['linear_regression'] is None:
print("โ ๏ธ Creating dummy model for Linear Regression")
models['linear_regression'] = create_dummy_model("linear_regression")
else:
print("โ
Linear Regression model loaded and validated")
except Exception as e:
print(f"โ Error downloading Linear Regression model: {e}")
print("โ ๏ธ Creating dummy model for Linear Regression")
models['linear_regression'] = create_dummy_model("linear_regression")
return models
def load_data():
"""Load data using Hugging Face Hub"""
try:
data_path = hf_hub_download(
repo_id="Lesterchia174/HDB_Price_Predictor",
filename="base_hdb_resale_prices_2015Jan-2025Jun_processed.csv",
repo_type="space"
)
df = pd.read_csv(data_path)
print("โ
Data loaded successfully via Hugging Face Hub")
return df
except Exception as e:
print(f"โ Error loading data: {e}")
return create_sample_data()
def create_sample_data():
"""Create sample data if real data isn't available"""
np.random.seed(42)
towns = ['ANG MO KIO', 'BEDOK', 'TAMPINES', 'WOODLANDS', 'JURONG WEST']
flat_types = ['4 ROOM', '5 ROOM', 'EXECUTIVE']
flat_models = ['Improved', 'Model A', 'New Generation']
data = []
for _ in range(100):
town = np.random.choice(towns)
flat_type = np.random.choice(flat_types)
flat_model = np.random.choice(flat_models)
floor_area = np.random.randint(85, 150)
storey = np.random.randint(1, 25)
age = np.random.randint(0, 40)
base_price = floor_area * 5000
town_bonus = towns.index(town) * 20000
storey_bonus = storey * 2000
age_discount = age * 1500
flat_type_bonus = flat_types.index(flat_type) * 30000
resale_price = base_price + town_bonus + storey_bonus - age_discount + flat_type_bonus
resale_price = max(300000, resale_price + np.random.randint(-20000, 20000))
data.append({
'town': town, 'flat_type': flat_type, 'flat_model': flat_model,
'floor_area_sqm': floor_area, 'storey_level': storey,
'flat_age': age, 'resale_price': resale_price
})
return pd.DataFrame(data)
def preprocess_input(user_input, model_type='xgboost'):
"""Preprocess user input for prediction with correct feature mapping"""
# Flat type mapping
flat_type_mapping = {'1 ROOM': 1, '2 ROOM': 2, '3 ROOM': 3, '4 ROOM': 4,
'5 ROOM': 5, 'EXECUTIVE': 6, 'MULTI-GENERATION': 7}
# Town mapping
town_mapping = {
'SENGKANG': 0, 'WOODLANDS': 1, 'TAMPINES': 2, 'PUNGGOL': 3,
'JURONG WEST': 4, 'YISHUN': 5, 'BEDOK': 6, 'HOUGANG': 7,
'CHOA CHU KANG': 8, 'ANG MO KIO': 9
}
# Flat model mapping
flat_model_mapping = {
'Model A': 0, 'Improved': 1, 'New Generation': 2,
'Standard': 3, 'Premium': 4
}
# Create input array with features
input_features = [
user_input['floor_area_sqm'], # Feature 1
user_input['storey_level'], # Feature 2
user_input['flat_age'], # Feature 3
99 - user_input['flat_age'], # Feature 4: remaining_lease
2025, # Feature 5: transaction_year
flat_type_mapping.get(user_input['flat_type'], 4), # Feature 6: flat_type_ordinal
town_mapping.get(user_input['town'], 0), # Feature 7: town_encoded
flat_model_mapping.get(user_input['flat_model'], 0), # Feature 8: flat_model_encoded
1 # Feature 9: (placeholder)
]
return np.array([input_features])
def create_market_insights_chart(data, user_input, predicted_price_xgb, predicted_price_lr):
"""Create market insights visualization with both model predictions"""
if data is None or len(data) == 0:
return None
similar_properties = data[
(data['flat_type'] == user_input['flat_type']) &
(data['town'] == user_input['town'])
]
if len(similar_properties) < 5:
similar_properties = data[data['flat_type'] == user_input['flat_type']]
if len(similar_properties) > 0:
fig = px.scatter(similar_properties, x='floor_area_sqm', y='resale_price',
color='flat_model',
title=f"Market Position: {user_input['flat_type']} in {user_input['town']}",
labels={'floor_area_sqm': 'Floor Area (sqm)', 'resale_price': 'Resale Price (SGD)'})
# Add both model predictions
fig.add_trace(go.Scatter(x=[user_input['floor_area_sqm']], y=[predicted_price_xgb],
mode='markers',
marker=dict(symbol='star', size=20, color='red',
line=dict(width=2, color='darkred')),
name='XGBoost Prediction'))
fig.add_trace(go.Scatter(x=[user_input['floor_area_sqm']], y=[predicted_price_lr],
mode='markers',
marker=dict(symbol='diamond', size=20, color='blue',
line=dict(width=2, color='darkblue')),
name='Linear Regression Prediction'))
fig.update_layout(template="plotly_white", height=400, showlegend=True)
return fig
return None
def predict_hdb_price(town, flat_type, flat_model, floor_area_sqm, storey_level, flat_age, model_choice):
"""Main prediction function for Gradio with robust error handling"""
user_input = {
'town': town,
'flat_type': flat_type,
'flat_model': flat_model,
'floor_area_sqm': floor_area_sqm,
'storey_level': storey_level,
'flat_age': flat_age
}
try:
processed_input = preprocess_input(user_input)
# Get predictions from both models with error handling
try:
predicted_price_xgb = max(0, float(models['xgboost'].predict(processed_input)[0]))
except Exception as e:
print(f"โ XGBoost prediction error: {e}")
predicted_price_xgb = 400000 # Fallback value
try:
predicted_price_lr = max(0, float(models['linear_regression'].predict(processed_input)[0]))
except Exception as e:
print(f"โ Linear Regression prediction error: {e}")
predicted_price_lr = 380000 # Fallback value
# Use selected model's prediction
if model_choice == "XGBoost":
final_price = predicted_price_xgb
model_name = "XGBoost"
else:
final_price = predicted_price_lr
model_name = "Linear Regression"
# Create insights
remaining_lease = 99 - flat_age
price_per_sqm = final_price / floor_area_sqm
insights = f"""
**Property Summary:**
- Location: {town}
- Type: {flat_type}
- Model: {flat_model}
- Area: {floor_area_sqm} sqm
- Floor: Level {storey_level}
- Age: {flat_age} years
- Remaining Lease: {remaining_lease} years
- Price per sqm: ${price_per_sqm:,.0f}
**Model Predictions:**
- XGBoost: ${predicted_price_xgb:,.0f}
**Financing Eligibility:**
"""
if remaining_lease >= 60:
insights += "โ
Bank loan eligible"
elif remaining_lease >= 20:
insights += "โ ๏ธ HDB loan eligible only"
else:
insights += "โ Limited financing options"
# Create chart with both predictions
chart = create_market_insights_chart(data, user_input, predicted_price_xgb, predicted_price_lr)
return f"${final_price:,.0f}", chart, insights
except Exception as e:
error_msg = f"Prediction failed. Error: {str(e)}"
print(error_msg)
return "Error: Prediction failed", None, error_msg
# Preload models and data
print("Loading models and data...")
models = load_models()
data = load_data()
# Define Gradio interface
towns_list = [
'SENGKANG', 'WOODLANDS', 'TAMPINES', 'PUNGGOL', 'JURONG WEST',
'YISHUN', 'BEDOK', 'HOUGANG', 'CHOA CHU KANG', 'ANG MO KIO'
]
flat_types = ['3 ROOM', '4 ROOM', '5 ROOM', 'EXECUTIVE', '2 ROOM', '1 ROOM']
flat_models = ['Model A', 'Improved', 'New Generation', 'Standard', 'Premium']
# Create Gradio interface
with gr.Blocks(title="๐ HDB Price Predictor", theme=gr.themes.Soft()) as demo:
gr.Markdown("# ๐ HDB Price Predictor")
gr.Markdown("Predict HDB resale prices using different machine learning models")
with gr.Row():
with gr.Column():
town = gr.Dropdown(label="Town", choices=sorted(towns_list), value="ANG MO KIO")
flat_type = gr.Dropdown(label="Flat Type", choices=sorted(flat_types), value="4 ROOM")
flat_model = gr.Dropdown(label="Flat Model", choices=sorted(flat_models), value="Improved")
floor_area_sqm = gr.Slider(label="Floor Area (sqm)", minimum=30, maximum=200, value=95, step=5)
storey_level = gr.Slider(label="Storey Level", minimum=1, maximum=50, value=8, step=1)
flat_age = gr.Slider(label="Flat Age (years)", minimum=0, maximum=99, value=15, step=1)
model_choice = gr.Radio(label="Select Model",
choices=["XGBoost"], #,"Linear Regression"
value="XGBoost")
predict_btn = gr.Button("๐ฎ Predict Price", variant="primary")
with gr.Column():
predicted_price = gr.Label(label="๐ฐ Predicted Price")
insights = gr.Markdown(label="๐ Property Summary")
with gr.Row():
chart_output = gr.Plot(label="๐ Market Insights")
# Connect button to function
predict_btn.click(
fn=predict_hdb_price,
inputs=[town, flat_type, flat_model, floor_area_sqm, storey_level, flat_age, model_choice],
outputs=[predicted_price, chart_output, insights]
)
# To run in Colab
if __name__ == "__main__":
demo.launch(share=True) |