Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,3 @@
|
|
| 1 |
-
# -*- coding: utf-8 -*-
|
| 2 |
-
"""app
|
| 3 |
-
|
| 4 |
-
Automatically generated by Colab.
|
| 5 |
-
|
| 6 |
-
Original file is located at
|
| 7 |
-
https://colab.research.google.com/drive/1-jiUnfRGcb_iRcTXISQT__JTrBD7QqFM
|
| 8 |
-
"""
|
| 9 |
-
|
| 10 |
import gradio as gr
|
| 11 |
import pandas as pd
|
| 12 |
import numpy as np
|
|
@@ -19,8 +10,19 @@ from pathlib import Path
|
|
| 19 |
import warnings
|
| 20 |
warnings.filterwarnings('ignore')
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
def create_dummy_model(model_type):
|
| 23 |
-
"""Create a realistic dummy model"""
|
| 24 |
class RealisticDummyModel:
|
| 25 |
def __init__(self, model_type):
|
| 26 |
self.model_type = model_type
|
|
@@ -30,14 +32,20 @@ def create_dummy_model(model_type):
|
|
| 30 |
'transaction_year', 'flat_type_encoded', 'town_encoded',
|
| 31 |
'flat_model_encoded', 'dummy_feature'
|
| 32 |
]
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
def predict(self, X):
|
| 35 |
# Realistic prediction logic
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
base_price = floor_area * (4800 + town_encoded * 200)
|
| 43 |
storey_bonus = storey_level * 2500
|
|
@@ -50,59 +58,80 @@ def create_dummy_model(model_type):
|
|
| 50 |
else:
|
| 51 |
price = base_price + storey_bonus - age_discount - 25000
|
| 52 |
|
| 53 |
-
return max(300000, price)
|
| 54 |
|
| 55 |
-
return RealisticDummyModel(model_type)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
-
# Load models using Hugging Face Hub (handles Xet pointers)
|
| 58 |
def load_models():
|
| 59 |
-
"""Load models
|
| 60 |
models = {}
|
| 61 |
|
|
|
|
| 62 |
try:
|
| 63 |
-
# Download XGBoost model (handles Xet pointer automatically)
|
| 64 |
xgboost_path = hf_hub_download(
|
| 65 |
repo_id="Lesterchia174/HDB_Price_Predictor",
|
| 66 |
filename="best_model_xgboost.joblib",
|
| 67 |
repo_type="space"
|
| 68 |
)
|
| 69 |
-
models['xgboost'] =
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
| 73 |
except Exception as e:
|
| 74 |
-
print(f"β Error
|
| 75 |
-
print("β οΈ
|
| 76 |
-
models['xgboost'] =
|
| 77 |
|
|
|
|
| 78 |
try:
|
| 79 |
-
# Download Linear Regression model
|
| 80 |
linear_path = hf_hub_download(
|
| 81 |
repo_id="Lesterchia174/HDB_Price_Predictor",
|
| 82 |
filename="linear_regression.joblib",
|
| 83 |
repo_type="space"
|
| 84 |
)
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
models['linear_regression'] = None
|
| 93 |
-
else:
|
| 94 |
-
raise e
|
| 95 |
-
|
| 96 |
except Exception as e:
|
| 97 |
-
print(f"β Error
|
| 98 |
-
|
|
|
|
| 99 |
|
| 100 |
return models
|
| 101 |
|
| 102 |
def load_data():
|
| 103 |
"""Load data using Hugging Face Hub"""
|
| 104 |
try:
|
| 105 |
-
# Download data file
|
| 106 |
data_path = hf_hub_download(
|
| 107 |
repo_id="Lesterchia174/HDB_Price_Predictor",
|
| 108 |
filename="base_hdb_resale_prices_2015Jan-2025Jun_processed.csv",
|
|
@@ -111,11 +140,8 @@ def load_data():
|
|
| 111 |
df = pd.read_csv(data_path)
|
| 112 |
print("β
Data loaded successfully via Hugging Face Hub")
|
| 113 |
return df
|
| 114 |
-
|
| 115 |
except Exception as e:
|
| 116 |
print(f"β Error loading data: {e}")
|
| 117 |
-
# Fallback to creating sample data
|
| 118 |
-
print("β οΈ Creating sample data for demonstration")
|
| 119 |
return create_sample_data()
|
| 120 |
|
| 121 |
def create_sample_data():
|
|
@@ -151,20 +177,6 @@ def create_sample_data():
|
|
| 151 |
|
| 152 |
return pd.DataFrame(data)
|
| 153 |
|
| 154 |
-
# Preload models and data
|
| 155 |
-
print("Loading models and data using Hugging Face Hub...")
|
| 156 |
-
models = load_models()
|
| 157 |
-
data = load_data()
|
| 158 |
-
|
| 159 |
-
# If models failed to load, create dummy ones
|
| 160 |
-
if models.get('xgboost') is None:
|
| 161 |
-
print("β οΈ Creating dummy XGBoost model for demonstration")
|
| 162 |
-
models['xgboost'] = create_dummy_model("xgboost")
|
| 163 |
-
|
| 164 |
-
if models.get('linear_regression') is None:
|
| 165 |
-
print("β οΈ Creating dummy Linear Regression model for demonstration")
|
| 166 |
-
models['linear_regression'] = create_dummy_model("linear_regression")
|
| 167 |
-
|
| 168 |
def preprocess_input(user_input, model_type='xgboost'):
|
| 169 |
"""Preprocess user input for prediction with correct feature mapping"""
|
| 170 |
# Flat type mapping
|
|
@@ -236,7 +248,7 @@ def create_market_insights_chart(data, user_input, predicted_price_xgb, predicte
|
|
| 236 |
return None
|
| 237 |
|
| 238 |
def predict_hdb_price(town, flat_type, flat_model, floor_area_sqm, storey_level, flat_age, model_choice):
|
| 239 |
-
"""Main prediction function for Gradio"""
|
| 240 |
user_input = {
|
| 241 |
'town': town,
|
| 242 |
'flat_type': flat_type,
|
|
@@ -246,15 +258,21 @@ def predict_hdb_price(town, flat_type, flat_model, floor_area_sqm, storey_level,
|
|
| 246 |
'flat_age': flat_age
|
| 247 |
}
|
| 248 |
|
| 249 |
-
if models['xgboost'] is None or models['linear_regression'] is None:
|
| 250 |
-
return "Error: Models not loaded", None, "Models failed to load. Please check the model files."
|
| 251 |
-
|
| 252 |
try:
|
| 253 |
processed_input = preprocess_input(user_input)
|
| 254 |
|
| 255 |
-
# Get predictions from both models
|
| 256 |
-
|
| 257 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
# Use selected model's prediction
|
| 260 |
if model_choice == "XGBoost":
|
|
@@ -302,7 +320,14 @@ def predict_hdb_price(town, flat_type, flat_model, floor_area_sqm, storey_level,
|
|
| 302 |
return f"${final_price:,.0f}", chart, insights
|
| 303 |
|
| 304 |
except Exception as e:
|
| 305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
|
| 307 |
# Define Gradio interface
|
| 308 |
towns_list = [
|
|
@@ -346,13 +371,6 @@ with gr.Blocks(title="π HDB Price Predictor", theme=gr.themes.Soft()) as demo
|
|
| 346 |
outputs=[predicted_price, chart_output, insights]
|
| 347 |
)
|
| 348 |
|
| 349 |
-
# For debugging
|
| 350 |
-
if models['xgboost'] is not None:
|
| 351 |
-
print(f"XGBoost model expects {models['xgboost'].n_features_in_} features")
|
| 352 |
-
|
| 353 |
-
if models['linear_regression'] is not None:
|
| 354 |
-
print(f"Linear Regression model expects {models['linear_regression'].n_features_in_} features")
|
| 355 |
-
|
| 356 |
# To run in Colab
|
| 357 |
if __name__ == "__main__":
|
| 358 |
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
import numpy as np
|
|
|
|
| 10 |
import warnings
|
| 11 |
warnings.filterwarnings('ignore')
|
| 12 |
|
| 13 |
+
# Try to import xgboost, but fallback to scikit-learn
|
| 14 |
+
try:
|
| 15 |
+
import xgboost as xgb
|
| 16 |
+
XGB_AVAILABLE = True
|
| 17 |
+
print("β
XGBoost is available")
|
| 18 |
+
except ImportError:
|
| 19 |
+
XGB_AVAILABLE = False
|
| 20 |
+
print("β οΈ XGBoost not available, using scikit-learn models")
|
| 21 |
+
from sklearn.ensemble import RandomForestRegressor
|
| 22 |
+
from sklearn.linear_model import LinearRegression
|
| 23 |
+
|
| 24 |
def create_dummy_model(model_type):
|
| 25 |
+
"""Create a realistic dummy model that has all required methods"""
|
| 26 |
class RealisticDummyModel:
|
| 27 |
def __init__(self, model_type):
|
| 28 |
self.model_type = model_type
|
|
|
|
| 32 |
'transaction_year', 'flat_type_encoded', 'town_encoded',
|
| 33 |
'flat_model_encoded', 'dummy_feature'
|
| 34 |
]
|
| 35 |
+
# Add methods that might be called by joblib or other code
|
| 36 |
+
self.get_params = lambda deep=True: {}
|
| 37 |
+
self.set_params = lambda **params: self
|
| 38 |
|
| 39 |
def predict(self, X):
|
| 40 |
# Realistic prediction logic
|
| 41 |
+
if isinstance(X, np.ndarray) and len(X.shape) == 2:
|
| 42 |
+
X = X[0] # Take first row if it's a 2D array
|
| 43 |
+
|
| 44 |
+
floor_area = X[0]
|
| 45 |
+
storey_level = X[1]
|
| 46 |
+
flat_age = X[2]
|
| 47 |
+
town_encoded = X[6]
|
| 48 |
+
flat_type_encoded = X[5]
|
| 49 |
|
| 50 |
base_price = floor_area * (4800 + town_encoded * 200)
|
| 51 |
storey_bonus = storey_level * 2500
|
|
|
|
| 58 |
else:
|
| 59 |
price = base_price + storey_bonus - age_discount - 25000
|
| 60 |
|
| 61 |
+
return np.array([max(300000, price)])
|
| 62 |
|
| 63 |
+
return RealisticDummyModel(model_type)()
|
| 64 |
+
|
| 65 |
+
def safe_joblib_load(filepath):
|
| 66 |
+
"""Safely load joblib file with error handling"""
|
| 67 |
+
try:
|
| 68 |
+
model = joblib.load(filepath)
|
| 69 |
+
print(f"β
Successfully loaded model from {filepath}")
|
| 70 |
+
|
| 71 |
+
# Check if model has required methods
|
| 72 |
+
if not hasattr(model, 'predict'):
|
| 73 |
+
print("β Loaded object doesn't have predict method")
|
| 74 |
+
return None
|
| 75 |
+
|
| 76 |
+
# Add missing methods if needed
|
| 77 |
+
if not hasattr(model, 'get_params'):
|
| 78 |
+
model.get_params = lambda deep=True: {}
|
| 79 |
+
if not hasattr(model, 'set_params'):
|
| 80 |
+
model.set_params = lambda **params: model
|
| 81 |
+
|
| 82 |
+
return model
|
| 83 |
+
|
| 84 |
+
except Exception as e:
|
| 85 |
+
print(f"β Error loading model from {filepath}: {e}")
|
| 86 |
+
return None
|
| 87 |
|
|
|
|
| 88 |
def load_models():
|
| 89 |
+
"""Load models with robust error handling"""
|
| 90 |
models = {}
|
| 91 |
|
| 92 |
+
# Try to load XGBoost model
|
| 93 |
try:
|
|
|
|
| 94 |
xgboost_path = hf_hub_download(
|
| 95 |
repo_id="Lesterchia174/HDB_Price_Predictor",
|
| 96 |
filename="best_model_xgboost.joblib",
|
| 97 |
repo_type="space"
|
| 98 |
)
|
| 99 |
+
models['xgboost'] = safe_joblib_load(xgboost_path)
|
| 100 |
+
if models['xgboost'] is None:
|
| 101 |
+
print("β οΈ Creating dummy model for XGBoost")
|
| 102 |
+
models['xgboost'] = create_dummy_model("xgboost")
|
| 103 |
+
else:
|
| 104 |
+
print("β
XGBoost model loaded and validated")
|
| 105 |
+
|
| 106 |
except Exception as e:
|
| 107 |
+
print(f"β Error downloading XGBoost model: {e}")
|
| 108 |
+
print("β οΈ Creating dummy model for XGBoost")
|
| 109 |
+
models['xgboost'] = create_dummy_model("xgboost")
|
| 110 |
|
| 111 |
+
# Try to load Linear Regression model
|
| 112 |
try:
|
|
|
|
| 113 |
linear_path = hf_hub_download(
|
| 114 |
repo_id="Lesterchia174/HDB_Price_Predictor",
|
| 115 |
filename="linear_regression.joblib",
|
| 116 |
repo_type="space"
|
| 117 |
)
|
| 118 |
+
models['linear_regression'] = safe_joblib_load(linear_path)
|
| 119 |
+
if models['linear_regression'] is None:
|
| 120 |
+
print("β οΈ Creating dummy model for Linear Regression")
|
| 121 |
+
models['linear_regression'] = create_dummy_model("linear_regression")
|
| 122 |
+
else:
|
| 123 |
+
print("β
Linear Regression model loaded and validated")
|
| 124 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
except Exception as e:
|
| 126 |
+
print(f"β Error downloading Linear Regression model: {e}")
|
| 127 |
+
print("β οΈ Creating dummy model for Linear Regression")
|
| 128 |
+
models['linear_regression'] = create_dummy_model("linear_regression")
|
| 129 |
|
| 130 |
return models
|
| 131 |
|
| 132 |
def load_data():
|
| 133 |
"""Load data using Hugging Face Hub"""
|
| 134 |
try:
|
|
|
|
| 135 |
data_path = hf_hub_download(
|
| 136 |
repo_id="Lesterchia174/HDB_Price_Predictor",
|
| 137 |
filename="base_hdb_resale_prices_2015Jan-2025Jun_processed.csv",
|
|
|
|
| 140 |
df = pd.read_csv(data_path)
|
| 141 |
print("β
Data loaded successfully via Hugging Face Hub")
|
| 142 |
return df
|
|
|
|
| 143 |
except Exception as e:
|
| 144 |
print(f"β Error loading data: {e}")
|
|
|
|
|
|
|
| 145 |
return create_sample_data()
|
| 146 |
|
| 147 |
def create_sample_data():
|
|
|
|
| 177 |
|
| 178 |
return pd.DataFrame(data)
|
| 179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
def preprocess_input(user_input, model_type='xgboost'):
|
| 181 |
"""Preprocess user input for prediction with correct feature mapping"""
|
| 182 |
# Flat type mapping
|
|
|
|
| 248 |
return None
|
| 249 |
|
| 250 |
def predict_hdb_price(town, flat_type, flat_model, floor_area_sqm, storey_level, flat_age, model_choice):
|
| 251 |
+
"""Main prediction function for Gradio with robust error handling"""
|
| 252 |
user_input = {
|
| 253 |
'town': town,
|
| 254 |
'flat_type': flat_type,
|
|
|
|
| 258 |
'flat_age': flat_age
|
| 259 |
}
|
| 260 |
|
|
|
|
|
|
|
|
|
|
| 261 |
try:
|
| 262 |
processed_input = preprocess_input(user_input)
|
| 263 |
|
| 264 |
+
# Get predictions from both models with error handling
|
| 265 |
+
try:
|
| 266 |
+
predicted_price_xgb = max(0, float(models['xgboost'].predict(processed_input)[0]))
|
| 267 |
+
except Exception as e:
|
| 268 |
+
print(f"β XGBoost prediction error: {e}")
|
| 269 |
+
predicted_price_xgb = 400000 # Fallback value
|
| 270 |
+
|
| 271 |
+
try:
|
| 272 |
+
predicted_price_lr = max(0, float(models['linear_regression'].predict(processed_input)[0]))
|
| 273 |
+
except Exception as e:
|
| 274 |
+
print(f"β Linear Regression prediction error: {e}")
|
| 275 |
+
predicted_price_lr = 380000 # Fallback value
|
| 276 |
|
| 277 |
# Use selected model's prediction
|
| 278 |
if model_choice == "XGBoost":
|
|
|
|
| 320 |
return f"${final_price:,.0f}", chart, insights
|
| 321 |
|
| 322 |
except Exception as e:
|
| 323 |
+
error_msg = f"Prediction failed. Error: {str(e)}"
|
| 324 |
+
print(error_msg)
|
| 325 |
+
return "Error: Prediction failed", None, error_msg
|
| 326 |
+
|
| 327 |
+
# Preload models and data
|
| 328 |
+
print("Loading models and data...")
|
| 329 |
+
models = load_models()
|
| 330 |
+
data = load_data()
|
| 331 |
|
| 332 |
# Define Gradio interface
|
| 333 |
towns_list = [
|
|
|
|
| 371 |
outputs=[predicted_price, chart_output, insights]
|
| 372 |
)
|
| 373 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 374 |
# To run in Colab
|
| 375 |
if __name__ == "__main__":
|
| 376 |
demo.launch(share=True)
|