Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -109,23 +109,23 @@ def load_models():
|
|
| 109 |
models['xgboost'] = create_dummy_model("xgboost")
|
| 110 |
|
| 111 |
# Try to load Linear Regression model
|
| 112 |
-
try:
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
|
| 125 |
-
except Exception as e:
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
|
| 130 |
return models
|
| 131 |
|
|
@@ -237,11 +237,11 @@ def create_market_insights_chart(data, user_input, predicted_price_xgb, predicte
|
|
| 237 |
line=dict(width=2, color='darkred')),
|
| 238 |
name='XGBoost Prediction'))
|
| 239 |
|
| 240 |
-
fig.add_trace(go.Scatter(x=[user_input['floor_area_sqm']], y=[predicted_price_lr],
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
|
| 246 |
fig.update_layout(template="plotly_white", height=400, showlegend=True)
|
| 247 |
return fig
|
|
@@ -268,11 +268,11 @@ def predict_hdb_price(town, flat_type, flat_model, floor_area_sqm, storey_level,
|
|
| 268 |
print(f"β XGBoost prediction error: {e}")
|
| 269 |
predicted_price_xgb = 400000 # Fallback value
|
| 270 |
|
| 271 |
-
try:
|
| 272 |
-
|
| 273 |
-
except Exception as e:
|
| 274 |
-
|
| 275 |
-
|
| 276 |
|
| 277 |
# Use selected model's prediction
|
| 278 |
if model_choice == "XGBoost":
|
|
@@ -362,7 +362,7 @@ with gr.Blocks(title="π HDB Price Predictor", theme=gr.themes.Soft()) as demo
|
|
| 362 |
insights = gr.Markdown(label="π Property Summary")
|
| 363 |
|
| 364 |
with gr.Row():
|
| 365 |
-
chart_output = gr.Plot(label="π Market Insights
|
| 366 |
|
| 367 |
# Connect button to function
|
| 368 |
predict_btn.click(
|
|
|
|
| 109 |
models['xgboost'] = create_dummy_model("xgboost")
|
| 110 |
|
| 111 |
# Try to load Linear Regression model
|
| 112 |
+
#try:
|
| 113 |
+
# linear_path = hf_hub_download(
|
| 114 |
+
# repo_id="Lesterchia174/HDB_Price_Predictor",
|
| 115 |
+
# filename="linear_regression.joblib",
|
| 116 |
+
# repo_type="space"
|
| 117 |
+
# )
|
| 118 |
+
# models['linear_regression'] = safe_joblib_load(linear_path)
|
| 119 |
+
# if models['linear_regression'] is None:
|
| 120 |
+
# print("β οΈ Creating dummy model for Linear Regression")
|
| 121 |
+
# models['linear_regression'] = create_dummy_model("linear_regression")
|
| 122 |
+
# else:
|
| 123 |
+
# print("β
Linear Regression model loaded and validated")
|
| 124 |
|
| 125 |
+
#except Exception as e:
|
| 126 |
+
# print(f"β Error downloading Linear Regression model: {e}")
|
| 127 |
+
# print("β οΈ Creating dummy model for Linear Regression")
|
| 128 |
+
# models['linear_regression'] = create_dummy_model("linear_regression")
|
| 129 |
|
| 130 |
return models
|
| 131 |
|
|
|
|
| 237 |
line=dict(width=2, color='darkred')),
|
| 238 |
name='XGBoost Prediction'))
|
| 239 |
|
| 240 |
+
#fig.add_trace(go.Scatter(x=[user_input['floor_area_sqm']], y=[predicted_price_lr],
|
| 241 |
+
# mode='markers',
|
| 242 |
+
# marker=dict(symbol='diamond', size=20, color='blue',
|
| 243 |
+
# line=dict(width=2, color='darkblue')),
|
| 244 |
+
# name='Linear Regression Prediction'))
|
| 245 |
|
| 246 |
fig.update_layout(template="plotly_white", height=400, showlegend=True)
|
| 247 |
return fig
|
|
|
|
| 268 |
print(f"β XGBoost prediction error: {e}")
|
| 269 |
predicted_price_xgb = 400000 # Fallback value
|
| 270 |
|
| 271 |
+
#try:
|
| 272 |
+
# predicted_price_lr = max(0, float(models['linear_regression'].predict(processed_input)[0]))
|
| 273 |
+
#except Exception as e:
|
| 274 |
+
# print(f"β Linear Regression prediction error: {e}")
|
| 275 |
+
# predicted_price_lr = 380000 # Fallback value
|
| 276 |
|
| 277 |
# Use selected model's prediction
|
| 278 |
if model_choice == "XGBoost":
|
|
|
|
| 362 |
insights = gr.Markdown(label="π Property Summary")
|
| 363 |
|
| 364 |
with gr.Row():
|
| 365 |
+
chart_output = gr.Plot(label="π Market Insights")
|
| 366 |
|
| 367 |
# Connect button to function
|
| 368 |
predict_btn.click(
|