SD-DEMO / app.py
HARRY07979's picture
Update app.py
46b5bb6 verified
import gradio as gr
import numpy as np
import random
from datetime import datetime
import torch
from diffusers import DiffusionPipeline
from optimum.intel.openvino import OVStableDiffusionPipeline
device = "cuda" if torch.cuda.is_available() else "cpu"
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# Chọn mô hình từ dropdown
model_choices = {
"SD‑Turbo (stabilityai/sd-turbo)": "stabilityai/sd-turbo",
"Stable Diffusion 1.5 (runwayml/stable-diffusion-1.5)": "runwayml/stable-diffusion-1.5",
"OpenVINO version (HARRY07979/sd-v1-5-openvino)": "HARRY07979/sd-v1-5-openvino",
}
# Biến toàn cục để lưu model đang dùng
current_model_id = None
pipe = None
# ---------------------------------------------------------
# Hàm load mô hình
def load_pipeline(model_id):
print(f"[INFO] Loading model: {model_id}")
if "openvino" in model_id.lower():
# Mô hình OpenVINO dùng OVStableDiffusionPipeline
pipe = OVStableDiffusionPipeline.from_pretrained(model_id)
pipe.reshape(batch_size=1, height=512, width=512, num_images_per_prompt=1)
pipe.compile()
else:
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
return pipe
# ---------------------------------------------------------
# Hàm infer
def infer(
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
model_selector,
):
global pipe, current_model_id
selected_model_id = model_choices[model_selector]
# Nếu đổi mô hình → load lại
if selected_model_id != current_model_id or pipe is None:
pipe = load_pipeline(selected_model_id)
current_model_id = selected_model_id
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Thời gian bắt đầu
t0 = datetime.now()
# Gọi pipeline theo loại
if "openvino" in selected_model_id.lower():
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
).images[0]
else:
generator = torch.Generator().manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
# Thời gian kết thúc
t1 = datetime.now()
delta = t1 - t0
total_seconds = delta.total_seconds()
days = delta.days
hours, rem = divmod(delta.seconds, 3600)
minutes, seconds = divmod(rem, 60)
microsecs = delta.microseconds
print(f"Start time: {t0.isoformat(sep=' ')}")
print(f"End time : {t1.isoformat(sep=' ')}")
print(f"Elapsed : {days}d {hours}h {minutes}m {seconds}s {microsecs}µs")
print(f"Total time: {total_seconds:.3f} seconds")
return image, seed
# ---------------------------------------------------------
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Text-to-Image Generator (Supports SD-Turbo / SD 1.5 / OpenVINO)")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt here...",
container=False,
)
run_button = gr.Button("Generate", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512
)
height = gr.Slider(
label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=7.5
)
num_inference_steps = gr.Slider(
label="Inference steps", minimum=1, maximum=100, step=1, value=25
)
model_selector = gr.Dropdown(
label="Select Model",
choices=list(model_choices.keys()),
value="SD‑Turbo (stabilityai/sd-turbo)",
)
gr.Examples(
examples=[
"Astronaut in a jungle, detailed, 8k",
"A cyberpunk dragon flying through neon city",
"A fantasy landscape with floating islands",
],
inputs=[prompt],
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
model_selector,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()