Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import numpy as np | |
| import random | |
| from datetime import datetime | |
| import torch | |
| from diffusers import DiffusionPipeline | |
| from optimum.intel.openvino import OVStableDiffusionPipeline | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| MAX_SEED = np.iinfo(np.int32).max | |
| MAX_IMAGE_SIZE = 1024 | |
| # Chọn mô hình từ dropdown | |
| model_choices = { | |
| "SD‑Turbo (stabilityai/sd-turbo)": "stabilityai/sd-turbo", | |
| "Stable Diffusion 1.5 (runwayml/stable-diffusion-1.5)": "runwayml/stable-diffusion-1.5", | |
| "OpenVINO version (HARRY07979/sd-v1-5-openvino)": "HARRY07979/sd-v1-5-openvino", | |
| } | |
| # Biến toàn cục để lưu model đang dùng | |
| current_model_id = None | |
| pipe = None | |
| # --------------------------------------------------------- | |
| # Hàm load mô hình | |
| def load_pipeline(model_id): | |
| print(f"[INFO] Loading model: {model_id}") | |
| if "openvino" in model_id.lower(): | |
| # Mô hình OpenVINO dùng OVStableDiffusionPipeline | |
| pipe = OVStableDiffusionPipeline.from_pretrained(model_id) | |
| pipe.reshape(batch_size=1, height=512, width=512, num_images_per_prompt=1) | |
| pipe.compile() | |
| else: | |
| if torch.cuda.is_available(): | |
| torch_dtype = torch.float16 | |
| else: | |
| torch_dtype = torch.float32 | |
| pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype) | |
| pipe = pipe.to(device) | |
| return pipe | |
| # --------------------------------------------------------- | |
| # Hàm infer | |
| def infer( | |
| prompt, | |
| negative_prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| model_selector, | |
| ): | |
| global pipe, current_model_id | |
| selected_model_id = model_choices[model_selector] | |
| # Nếu đổi mô hình → load lại | |
| if selected_model_id != current_model_id or pipe is None: | |
| pipe = load_pipeline(selected_model_id) | |
| current_model_id = selected_model_id | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| # Thời gian bắt đầu | |
| t0 = datetime.now() | |
| # Gọi pipeline theo loại | |
| if "openvino" in selected_model_id.lower(): | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| ).images[0] | |
| else: | |
| generator = torch.Generator().manual_seed(seed) | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| width=width, | |
| height=height, | |
| generator=generator, | |
| ).images[0] | |
| # Thời gian kết thúc | |
| t1 = datetime.now() | |
| delta = t1 - t0 | |
| total_seconds = delta.total_seconds() | |
| days = delta.days | |
| hours, rem = divmod(delta.seconds, 3600) | |
| minutes, seconds = divmod(rem, 60) | |
| microsecs = delta.microseconds | |
| print(f"Start time: {t0.isoformat(sep=' ')}") | |
| print(f"End time : {t1.isoformat(sep=' ')}") | |
| print(f"Elapsed : {days}d {hours}h {minutes}m {seconds}s {microsecs}µs") | |
| print(f"Total time: {total_seconds:.3f} seconds") | |
| return image, seed | |
| # --------------------------------------------------------- | |
| css = """ | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 640px; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("# Text-to-Image Generator (Supports SD-Turbo / SD 1.5 / OpenVINO)") | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt here...", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Generate", scale=0, variant="primary") | |
| result = gr.Image(label="Result", show_label=False) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| placeholder="Enter a negative prompt", | |
| ) | |
| seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| width = gr.Slider( | |
| label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512 | |
| ) | |
| height = gr.Slider( | |
| label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512 | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=7.5 | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Inference steps", minimum=1, maximum=100, step=1, value=25 | |
| ) | |
| model_selector = gr.Dropdown( | |
| label="Select Model", | |
| choices=list(model_choices.keys()), | |
| value="SD‑Turbo (stabilityai/sd-turbo)", | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| "Astronaut in a jungle, detailed, 8k", | |
| "A cyberpunk dragon flying through neon city", | |
| "A fantasy landscape with floating islands", | |
| ], | |
| inputs=[prompt], | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[ | |
| prompt, | |
| negative_prompt, | |
| seed, | |
| randomize_seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| model_selector, | |
| ], | |
| outputs=[result, seed], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |