import gradio as gr import numpy as np import random from datetime import datetime import torch from diffusers import DiffusionPipeline from optimum.intel.openvino import OVStableDiffusionPipeline device = "cuda" if torch.cuda.is_available() else "cpu" MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 # Chọn mô hình từ dropdown model_choices = { "SD‑Turbo (stabilityai/sd-turbo)": "stabilityai/sd-turbo", "Stable Diffusion 1.5 (runwayml/stable-diffusion-1.5)": "runwayml/stable-diffusion-1.5", "OpenVINO version (HARRY07979/sd-v1-5-openvino)": "HARRY07979/sd-v1-5-openvino", } # Biến toàn cục để lưu model đang dùng current_model_id = None pipe = None # --------------------------------------------------------- # Hàm load mô hình def load_pipeline(model_id): print(f"[INFO] Loading model: {model_id}") if "openvino" in model_id.lower(): # Mô hình OpenVINO dùng OVStableDiffusionPipeline pipe = OVStableDiffusionPipeline.from_pretrained(model_id) pipe.reshape(batch_size=1, height=512, width=512, num_images_per_prompt=1) pipe.compile() else: if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype) pipe = pipe.to(device) return pipe # --------------------------------------------------------- # Hàm infer def infer( prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, model_selector, ): global pipe, current_model_id selected_model_id = model_choices[model_selector] # Nếu đổi mô hình → load lại if selected_model_id != current_model_id or pipe is None: pipe = load_pipeline(selected_model_id) current_model_id = selected_model_id if randomize_seed: seed = random.randint(0, MAX_SEED) # Thời gian bắt đầu t0 = datetime.now() # Gọi pipeline theo loại if "openvino" in selected_model_id.lower(): image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, ).images[0] else: generator = torch.Generator().manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] # Thời gian kết thúc t1 = datetime.now() delta = t1 - t0 total_seconds = delta.total_seconds() days = delta.days hours, rem = divmod(delta.seconds, 3600) minutes, seconds = divmod(rem, 60) microsecs = delta.microseconds print(f"Start time: {t0.isoformat(sep=' ')}") print(f"End time : {t1.isoformat(sep=' ')}") print(f"Elapsed : {days}d {hours}h {minutes}m {seconds}s {microsecs}µs") print(f"Total time: {total_seconds:.3f} seconds") return image, seed # --------------------------------------------------------- css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("# Text-to-Image Generator (Supports SD-Turbo / SD 1.5 / OpenVINO)") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt here...", container=False, ) run_button = gr.Button("Generate", scale=0, variant="primary") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): negative_prompt = gr.Text( label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", ) seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512 ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512 ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=7.5 ) num_inference_steps = gr.Slider( label="Inference steps", minimum=1, maximum=100, step=1, value=25 ) model_selector = gr.Dropdown( label="Select Model", choices=list(model_choices.keys()), value="SD‑Turbo (stabilityai/sd-turbo)", ) gr.Examples( examples=[ "Astronaut in a jungle, detailed, 8k", "A cyberpunk dragon flying through neon city", "A fantasy landscape with floating islands", ], inputs=[prompt], ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, model_selector, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()