Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,27 +1,48 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
|
|
|
| 4 |
|
| 5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
| 6 |
-
from diffusers import DiffusionPipeline
|
| 7 |
import torch
|
|
|
|
|
|
|
| 8 |
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
-
model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
|
| 11 |
-
|
| 12 |
-
if torch.cuda.is_available():
|
| 13 |
-
torch_dtype = torch.float16
|
| 14 |
-
else:
|
| 15 |
-
torch_dtype = torch.float32
|
| 16 |
-
|
| 17 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
| 18 |
-
pipe = pipe.to(device)
|
| 19 |
|
| 20 |
MAX_SEED = np.iinfo(np.int32).max
|
| 21 |
MAX_IMAGE_SIZE = 1024
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
def infer(
|
| 26 |
prompt,
|
| 27 |
negative_prompt,
|
|
@@ -31,32 +52,60 @@ def infer(
|
|
| 31 |
height,
|
| 32 |
guidance_scale,
|
| 33 |
num_inference_steps,
|
| 34 |
-
|
| 35 |
):
|
| 36 |
-
|
| 37 |
-
seed = random.randint(0, MAX_SEED)
|
| 38 |
|
| 39 |
-
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
num_inference_steps=num_inference_steps,
|
| 46 |
-
width=width,
|
| 47 |
-
height=height,
|
| 48 |
-
generator=generator,
|
| 49 |
-
).images[0]
|
| 50 |
|
| 51 |
-
|
|
|
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
|
| 55 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
| 56 |
-
"An astronaut riding a green horse",
|
| 57 |
-
"A delicious ceviche cheesecake slice",
|
| 58 |
-
]
|
| 59 |
|
|
|
|
| 60 |
css = """
|
| 61 |
#col-container {
|
| 62 |
margin: 0 auto;
|
|
@@ -66,18 +115,17 @@ css = """
|
|
| 66 |
|
| 67 |
with gr.Blocks(css=css) as demo:
|
| 68 |
with gr.Column(elem_id="col-container"):
|
| 69 |
-
gr.Markdown("
|
| 70 |
|
| 71 |
with gr.Row():
|
| 72 |
prompt = gr.Text(
|
| 73 |
label="Prompt",
|
| 74 |
show_label=False,
|
| 75 |
max_lines=1,
|
| 76 |
-
placeholder="Enter your prompt",
|
| 77 |
container=False,
|
| 78 |
)
|
| 79 |
-
|
| 80 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
| 81 |
|
| 82 |
result = gr.Image(label="Result", show_label=False)
|
| 83 |
|
|
@@ -86,54 +134,41 @@ with gr.Blocks(css=css) as demo:
|
|
| 86 |
label="Negative prompt",
|
| 87 |
max_lines=1,
|
| 88 |
placeholder="Enter a negative prompt",
|
| 89 |
-
visible=False,
|
| 90 |
)
|
| 91 |
-
|
| 92 |
-
seed = gr.Slider(
|
| 93 |
-
label="Seed",
|
| 94 |
-
minimum=0,
|
| 95 |
-
maximum=MAX_SEED,
|
| 96 |
-
step=1,
|
| 97 |
-
value=0,
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 101 |
|
| 102 |
with gr.Row():
|
| 103 |
width = gr.Slider(
|
| 104 |
-
label="Width",
|
| 105 |
-
minimum=256,
|
| 106 |
-
maximum=MAX_IMAGE_SIZE,
|
| 107 |
-
step=32,
|
| 108 |
-
value=1024, # Replace with defaults that work for your model
|
| 109 |
)
|
| 110 |
-
|
| 111 |
height = gr.Slider(
|
| 112 |
-
label="Height",
|
| 113 |
-
minimum=256,
|
| 114 |
-
maximum=MAX_IMAGE_SIZE,
|
| 115 |
-
step=32,
|
| 116 |
-
value=1024, # Replace with defaults that work for your model
|
| 117 |
)
|
| 118 |
|
| 119 |
with gr.Row():
|
| 120 |
guidance_scale = gr.Slider(
|
| 121 |
-
label="Guidance scale",
|
| 122 |
-
minimum=0.0,
|
| 123 |
-
maximum=10.0,
|
| 124 |
-
step=0.1,
|
| 125 |
-
value=0.0, # Replace with defaults that work for your model
|
| 126 |
)
|
| 127 |
-
|
| 128 |
num_inference_steps = gr.Slider(
|
| 129 |
-
label="
|
| 130 |
-
minimum=1,
|
| 131 |
-
maximum=50,
|
| 132 |
-
step=1,
|
| 133 |
-
value=2, # Replace with defaults that work for your model
|
| 134 |
)
|
| 135 |
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
gr.on(
|
| 138 |
triggers=[run_button.click, prompt.submit],
|
| 139 |
fn=infer,
|
|
@@ -146,6 +181,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 146 |
height,
|
| 147 |
guidance_scale,
|
| 148 |
num_inference_steps,
|
|
|
|
| 149 |
],
|
| 150 |
outputs=[result, seed],
|
| 151 |
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import random
|
| 4 |
+
from datetime import datetime
|
| 5 |
|
|
|
|
|
|
|
| 6 |
import torch
|
| 7 |
+
from diffusers import DiffusionPipeline
|
| 8 |
+
from optimum.intel.openvino import OVStableDiffusionPipeline
|
| 9 |
|
| 10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
MAX_SEED = np.iinfo(np.int32).max
|
| 13 |
MAX_IMAGE_SIZE = 1024
|
| 14 |
|
| 15 |
+
# Chọn mô hình từ dropdown
|
| 16 |
+
model_choices = {
|
| 17 |
+
"SD‑Turbo (stabilityai/sd-turbo)": "stabilityai/sd-turbo",
|
| 18 |
+
"Stable Diffusion 1.5 (runwayml/stable-diffusion-1.5)": "runwayml/stable-diffusion-1.5",
|
| 19 |
+
"OpenVINO version (HARRY07979/sd-v1-5-openvino)": "HARRY07979/sd-v1-5-openvino",
|
| 20 |
+
}
|
| 21 |
|
| 22 |
+
# Biến toàn cục để lưu model đang dùng
|
| 23 |
+
current_model_id = None
|
| 24 |
+
pipe = None
|
| 25 |
+
|
| 26 |
+
# ---------------------------------------------------------
|
| 27 |
+
# Hàm load mô hình
|
| 28 |
+
def load_pipeline(model_id):
|
| 29 |
+
print(f"[INFO] Loading model: {model_id}")
|
| 30 |
+
if "openvino" in model_id.lower():
|
| 31 |
+
# Mô hình OpenVINO dùng OVStableDiffusionPipeline
|
| 32 |
+
pipe = OVStableDiffusionPipeline.from_pretrained(model_id)
|
| 33 |
+
pipe.reshape(batch_size=1, height=512, width=512, num_images_per_prompt=1)
|
| 34 |
+
pipe.compile()
|
| 35 |
+
else:
|
| 36 |
+
if torch.cuda.is_available():
|
| 37 |
+
torch_dtype = torch.float16
|
| 38 |
+
else:
|
| 39 |
+
torch_dtype = torch.float32
|
| 40 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
|
| 41 |
+
pipe = pipe.to(device)
|
| 42 |
+
return pipe
|
| 43 |
+
|
| 44 |
+
# ---------------------------------------------------------
|
| 45 |
+
# Hàm infer
|
| 46 |
def infer(
|
| 47 |
prompt,
|
| 48 |
negative_prompt,
|
|
|
|
| 52 |
height,
|
| 53 |
guidance_scale,
|
| 54 |
num_inference_steps,
|
| 55 |
+
model_selector,
|
| 56 |
):
|
| 57 |
+
global pipe, current_model_id
|
|
|
|
| 58 |
|
| 59 |
+
selected_model_id = model_choices[model_selector]
|
| 60 |
|
| 61 |
+
# Nếu đổi mô hình → load lại
|
| 62 |
+
if selected_model_id != current_model_id or pipe is None:
|
| 63 |
+
pipe = load_pipeline(selected_model_id)
|
| 64 |
+
current_model_id = selected_model_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
+
if randomize_seed:
|
| 67 |
+
seed = random.randint(0, MAX_SEED)
|
| 68 |
|
| 69 |
+
# Thời gian bắt đầu
|
| 70 |
+
t0 = datetime.now()
|
| 71 |
+
|
| 72 |
+
# Gọi pipeline theo loại
|
| 73 |
+
if "openvino" in selected_model_id.lower():
|
| 74 |
+
image = pipe(
|
| 75 |
+
prompt=prompt,
|
| 76 |
+
negative_prompt=negative_prompt,
|
| 77 |
+
guidance_scale=guidance_scale,
|
| 78 |
+
num_inference_steps=num_inference_steps,
|
| 79 |
+
).images[0]
|
| 80 |
+
else:
|
| 81 |
+
generator = torch.Generator().manual_seed(seed)
|
| 82 |
+
image = pipe(
|
| 83 |
+
prompt=prompt,
|
| 84 |
+
negative_prompt=negative_prompt,
|
| 85 |
+
guidance_scale=guidance_scale,
|
| 86 |
+
num_inference_steps=num_inference_steps,
|
| 87 |
+
width=width,
|
| 88 |
+
height=height,
|
| 89 |
+
generator=generator,
|
| 90 |
+
).images[0]
|
| 91 |
+
|
| 92 |
+
# Thời gian kết thúc
|
| 93 |
+
t1 = datetime.now()
|
| 94 |
+
delta = t1 - t0
|
| 95 |
+
total_seconds = delta.total_seconds()
|
| 96 |
+
days = delta.days
|
| 97 |
+
hours, rem = divmod(delta.seconds, 3600)
|
| 98 |
+
minutes, seconds = divmod(rem, 60)
|
| 99 |
+
microsecs = delta.microseconds
|
| 100 |
+
|
| 101 |
+
print(f"Start time: {t0.isoformat(sep=' ')}")
|
| 102 |
+
print(f"End time : {t1.isoformat(sep=' ')}")
|
| 103 |
+
print(f"Elapsed : {days}d {hours}h {minutes}m {seconds}s {microsecs}µs")
|
| 104 |
+
print(f"Total time: {total_seconds:.3f} seconds")
|
| 105 |
|
| 106 |
+
return image, seed
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
+
# ---------------------------------------------------------
|
| 109 |
css = """
|
| 110 |
#col-container {
|
| 111 |
margin: 0 auto;
|
|
|
|
| 115 |
|
| 116 |
with gr.Blocks(css=css) as demo:
|
| 117 |
with gr.Column(elem_id="col-container"):
|
| 118 |
+
gr.Markdown("# Text-to-Image Generator (Supports SD-Turbo / SD 1.5 / OpenVINO)")
|
| 119 |
|
| 120 |
with gr.Row():
|
| 121 |
prompt = gr.Text(
|
| 122 |
label="Prompt",
|
| 123 |
show_label=False,
|
| 124 |
max_lines=1,
|
| 125 |
+
placeholder="Enter your prompt here...",
|
| 126 |
container=False,
|
| 127 |
)
|
| 128 |
+
run_button = gr.Button("Generate", scale=0, variant="primary")
|
|
|
|
| 129 |
|
| 130 |
result = gr.Image(label="Result", show_label=False)
|
| 131 |
|
|
|
|
| 134 |
label="Negative prompt",
|
| 135 |
max_lines=1,
|
| 136 |
placeholder="Enter a negative prompt",
|
|
|
|
| 137 |
)
|
| 138 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 140 |
|
| 141 |
with gr.Row():
|
| 142 |
width = gr.Slider(
|
| 143 |
+
label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
)
|
|
|
|
| 145 |
height = gr.Slider(
|
| 146 |
+
label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
)
|
| 148 |
|
| 149 |
with gr.Row():
|
| 150 |
guidance_scale = gr.Slider(
|
| 151 |
+
label="Guidance scale", minimum=0.0, maximum=20.0, step=0.1, value=7.5
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
)
|
|
|
|
| 153 |
num_inference_steps = gr.Slider(
|
| 154 |
+
label="Inference steps", minimum=1, maximum=100, step=1, value=25
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
)
|
| 156 |
|
| 157 |
+
model_selector = gr.Dropdown(
|
| 158 |
+
label="Select Model",
|
| 159 |
+
choices=list(model_choices.keys()),
|
| 160 |
+
value="SD‑Turbo (stabilityai/sd-turbo)",
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
gr.Examples(
|
| 164 |
+
examples=[
|
| 165 |
+
"Astronaut in a jungle, detailed, 8k",
|
| 166 |
+
"A cyberpunk dragon flying through neon city",
|
| 167 |
+
"A fantasy landscape with floating islands",
|
| 168 |
+
],
|
| 169 |
+
inputs=[prompt],
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
gr.on(
|
| 173 |
triggers=[run_button.click, prompt.submit],
|
| 174 |
fn=infer,
|
|
|
|
| 181 |
height,
|
| 182 |
guidance_scale,
|
| 183 |
num_inference_steps,
|
| 184 |
+
model_selector,
|
| 185 |
],
|
| 186 |
outputs=[result, seed],
|
| 187 |
)
|