GIGAParviz's picture
Update main.py
63a714e verified
raw
history blame
15.7 kB
import pandas as pd
import numpy as np
import random
import copy
import optuna
import matplotlib.pyplot as plt
import seaborn as sns
from skopt import gp_minimize
from skopt.space import Real, Categorical
from skopt.utils import use_named_args
from statsmodels.tsa.arima.model import ARIMA
import numpy_financial as npf
optuna.logging.set_verbosity(optuna.logging.WARNING)
PROJECT_YEARS = 15
BASE_CAPACITY_KTA = 300
INFLATION_RATE = 0.015
TAX_RATE = 0.10
DEPRECIATION_YEARS = 15
TECHNOLOGY_DATA = {
"JNC": {"capex_base_M": 180.0, "opex_base_cents_kg": 150.0},
"Hoechst_AG": {"capex_base_M": 230.0, "opex_base_cents_kg": 155.0},
"BF_Goodrich": {"capex_base_M": 280.0, "opex_base_cents_kg": 160.0},
"Shin_Etsu_1991": {"capex_base_M": 260.0, "opex_base_cents_kg": 155.0},
"Shin_Etsu_2004": {"capex_base_M": 1500.0, "opex_base_cents_kg": 150.0},
"Vinnolit": {"capex_base_M": 240.0, "opex_base_cents_kg": 155.0},
"QVC_Qatar": {"capex_base_M": 200.0, "opex_base_cents_kg": 145.0},
"SP_Chemicals": {"capex_base_M": 250.0, "opex_base_cents_kg": 145.0},
"Engro_Pakistan": {"capex_base_M": 1400.0, "opex_base_cents_kg": 155.0},
"Formosa_BR_USA": {"capex_base_M": 380.0, "opex_base_cents_kg": 150.0},
"Shintech_USA_Exp": {"capex_base_M": 1700.0, "opex_base_cents_kg": 160.0},
"Zhongtai_China": {"capex_base_M": 1100.0, "opex_base_cents_kg": 155.0},
"Shintech_USA_2021": {"capex_base_M": 1700.0, "opex_base_cents_kg": 160.0},
"Reliance_India_2024": {"capex_base_M": 2200.0, "opex_base_cents_kg": 155.0},
"Orbia_Germany_2023": {"capex_base_M": 180.0, "opex_base_cents_kg": 155.0},
"Westlake_USA_2022": {"capex_base_M": 850.0, "opex_base_cents_kg": 160.0}
}
STRATEGY_DATA = {
'Integrated_Production': {'sourcing_cost_per_ton_pvc': 450.0, 'byproducts': {'caustic_soda_ton': 1.1, 'surplus_edc_ton': 0.523}},
'Purchase_VCM': {'sourcing_cost_per_ton_pvc': 650.0, 'byproducts': {'caustic_soda_ton': 0, 'surplus_edc_ton': 0}}
}
PRODUCT_PRICES_USD_PER_TON = {
'pvc_s65_export': 1100, 'pvc_s70_domestic': 950,
'byproduct_caustic_soda': 450, 'byproduct_surplus_edc': 170
}
OPTIMIZATION_SPACE = {
'capacity_kta': (500, 600),
'technology': ["Engro_Pakistan", "Shin_Etsu_2004"],
'sourcing_strategy': ['Integrated_Production'],
'export_market_mix': (0.6, 0.8),
'sell_byproducts': [True]
}
def forecast_prices(base_price, years=PROJECT_YEARS, cagr=0.04):
historical = [base_price * (1 + cagr + random.uniform(-0.03, 0.03)) ** i for i in range(-5, 0)]
model = ARIMA(historical, order=(1, 1, 0))
fit = model.fit()
forecast = fit.forecast(steps=years)
return [p * (1 + INFLATION_RATE) ** i for i, p in enumerate(forecast)]
def calculate_project_kpis(**params):
tech_data = TECHNOLOGY_DATA[params['technology']]
scaling_factor = (params['capacity_kta'] / BASE_CAPACITY_KTA) ** 0.65
total_capex = tech_data['capex_base_M'] * scaling_factor * 1_000_000
capacity_tons = params['capacity_kta'] * 1000
price_s65_forecast = forecast_prices(PRODUCT_PRICES_USD_PER_TON['pvc_s65_export'])
price_s70_forecast = forecast_prices(PRODUCT_PRICES_USD_PER_TON['pvc_s70_domestic'])
byproduct_caustic_forecast = forecast_prices(PRODUCT_PRICES_USD_PER_TON['byproduct_caustic_soda'])
byproduct_edc_forecast = forecast_prices(PRODUCT_PRICES_USD_PER_TON['byproduct_surplus_edc'])
cash_flows = [-total_capex]
depreciation_annual = total_capex / DEPRECIATION_YEARS
for year in range(1, PROJECT_YEARS + 1):
infl_factor = (1 + INFLATION_RATE) ** (year - 1)
price_s65 = price_s65_forecast[year - 1]
price_s70 = price_s70_forecast[year - 1] * 0.95 if params['capacity_kta'] >= 550 else price_s70_forecast[year - 1]
revenue_export = (capacity_tons * params['export_market_mix']) * price_s65
revenue_domestic = (capacity_tons * (1 - params['export_market_mix'])) * price_s70
pvc_revenue = revenue_export + revenue_domestic
byproduct_revenue = 0
if params['sourcing_strategy'] == 'Integrated_Production' and params['sell_byproducts']:
byproducts = STRATEGY_DATA['Integrated_Production']['byproducts']
byproduct_revenue += (byproducts['caustic_soda_ton'] * capacity_tons * byproduct_caustic_forecast[year - 1])
byproduct_revenue += (byproducts['surplus_edc_ton'] * capacity_tons * byproduct_edc_forecast[year - 1])
total_revenue = pvc_revenue + byproduct_revenue
opex_sourcing = STRATEGY_DATA['Integrated_Production']['sourcing_cost_per_ton_pvc'] * capacity_tons * infl_factor
opex_base = (tech_data['opex_base_cents_kg'] / 100) * capacity_tons * infl_factor
total_opex = opex_sourcing + opex_base
ebitda = total_revenue - total_opex
taxable_income = ebitda - depreciation_annual
taxes = max(taxable_income * TAX_RATE, 0)
net_income = taxable_income - taxes
free_cash_flow = net_income + depreciation_annual
cash_flows.append(free_cash_flow)
irr = npf.irr(cash_flows) * 100 if npf.irr(cash_flows) > 0 else -1.0
cumulative_cash_flow = np.cumsum(cash_flows)
payback_period_years = np.where(cumulative_cash_flow > 0)[0]
payback_period = payback_period_years[0] + 1 if len(payback_period_years) > 0 else float('inf')
annual_profit = np.mean([cf for cf in cash_flows[1:] if cf > 0])
return {"irr": irr, "annual_profit": annual_profit, "total_capex": total_capex, "payback_period": payback_period}
def run_optimizations_without_ml():
print("\n--- Running Optimization Algorithms ---")
results = []
results.append(run_bayesian_optimization())
results.append(run_genetic_algorithm())
results.append(run_optuna_direct())
return results
def run_genetic_algorithm():
print("Running Genetic Algorithm (GA)...")
population = [{k: random.choice(v) if isinstance(v, list) else random.uniform(*v) for k,v in OPTIMIZATION_SPACE.items()} for _ in range(40)]
best_overall_individual = None
best_overall_fitness = -float('inf')
for _ in range(80):
fitnesses = [calculate_project_kpis(**ind)['irr'] for ind in population]
if max(fitnesses) > best_overall_fitness:
best_overall_fitness = max(fitnesses)
best_overall_individual = population[np.argmax(fitnesses)]
selected = [max(random.sample(list(zip(population, fitnesses)), 5), key=lambda i: i[1])[0] for _ in range(50)]
next_gen = []
for i in range(0, 50, 2):
p1, p2 = selected[i], selected[i+1]
c1, c2 = copy.deepcopy(p1), copy.deepcopy(p2)
if random.random() < 0.9: c1['technology'], c2['technology'] = p2['technology'], c1['technology']
if random.random() < 0.2: c1['export_market_mix'] = random.uniform(*OPTIMIZATION_SPACE['export_market_mix'])
next_gen.extend([c1, c2])
population = next_gen
kpis = calculate_project_kpis(**best_overall_individual)
return {"Method": "Genetic Algorithm", **kpis, "Params": best_overall_individual}
def run_bayesian_optimization():
print("Running Bayesian Optimization...")
skopt_space = [
Real(OPTIMIZATION_SPACE['capacity_kta'][0], OPTIMIZATION_SPACE['capacity_kta'][1], name='capacity_kta'),
Categorical(OPTIMIZATION_SPACE['technology'], name='technology'),
Categorical(OPTIMIZATION_SPACE['sourcing_strategy'], name='sourcing_strategy'),
Real(OPTIMIZATION_SPACE['export_market_mix'][0], OPTIMIZATION_SPACE['export_market_mix'][1], name='export_market_mix'),
Categorical(OPTIMIZATION_SPACE['sell_byproducts'], name='sell_byproducts')
]
@use_named_args(skopt_space)
def objective(**params):
return -calculate_project_kpis(**params)['irr']
res = gp_minimize(objective, skopt_space, n_calls=90, random_state=42, n_initial_points=20)
best_params = {space.name: val for space, val in zip(skopt_space, res.x)}
kpis = calculate_project_kpis(**best_params)
return {"Method": "Bayesian Opt", **kpis, "Params": best_params}
def run_optuna_direct():
print("Running Optuna (TPE)...")
def objective(trial):
params = {
"capacity_kta": trial.suggest_float("capacity_kta", *OPTIMIZATION_SPACE['capacity_kta']),
"technology": trial.suggest_categorical("technology", OPTIMIZATION_SPACE['technology']),
"sourcing_strategy": trial.suggest_categorical("sourcing_strategy", OPTIMIZATION_SPACE['sourcing_strategy']),
"export_market_mix": trial.suggest_float("export_market_mix", *OPTIMIZATION_SPACE['export_market_mix']),
"sell_byproducts": trial.suggest_categorical("sell_byproducts", OPTIMIZATION_SPACE['sell_byproducts'])
}
return calculate_project_kpis(**params)['irr']
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=150, n_jobs=-1)
kpis = calculate_project_kpis(**study.best_params)
return {"Method": "Optuna (TPE - Direct)", **kpis, "Params": study.best_params}
def display_and_save_results(df_results):
print("\n--- Final Results and Comparison ---")
df_display = pd.DataFrame()
df_display['Method'] = df_results['Method']
df_display['Optimal IRR (%)'] = df_results['irr'].map('{:,.2f}%'.format)
df_display['Annual Profit ($M)'] = (df_results['annual_profit'] / 1_000_000).map('{:,.1f}'.format)
df_display['CAPEX ($M)'] = (df_results['total_capex'] / 1_000_000).map('{:,.1f}'.format)
df_display['Payback (Yrs)'] = df_results['payback_period'].map('{:,.1f}'.format)
param_df = pd.DataFrame(df_results['Params'].tolist())
param_df['capacity_kta'] = param_df['capacity_kta'].round(1)
param_df['export_market_mix'] = (param_df['export_market_mix'] * 100).round(1).astype(str) + '%'
df_display = pd.concat([df_display, param_df.rename(columns={
'capacity_kta': 'Capacity (KTA)', 'technology': 'Technology', 'sourcing_strategy': 'Sourcing',
'export_market_mix': 'Export Mix', 'sell_byproducts': 'Sell Byproducts'
})], axis=1)
print("\n✅ **Final Comparison of Optimal Scenarios (Sorted by Best IRR)**")
print("="*120)
print(df_display.to_string(index=False))
print("="*120)
df_display.to_csv("results.csv", index=False, encoding='utf-8-sig')
def create_kpi_comparison_dashboard(df_results):
print("\n--- Generating KPI Comparison Dashboard ---")
df_plot = df_results.sort_values(by='irr', ascending=False)
df_plot['annual_profit_M'] = df_plot['annual_profit'] / 1_000_000
df_plot['total_capex_M'] = df_plot['total_capex'] / 1_000_000
fig, axes = plt.subplots(2, 2, figsize=(20, 14))
fig.suptitle('Dashboard: Comprehensive Comparison of Optimization Methods', fontsize=22, weight='bold')
palettes = ['viridis', 'plasma', 'magma', 'cividis']
metrics = [
('irr', 'Optimal IRR (%)', axes[0, 0]),
('annual_profit_M', 'Annual Profit ($M)', axes[0, 1]),
('total_capex_M', 'Total CAPEX ($M)', axes[1, 0]),
('payback_period', 'Payback Period (Years)', axes[1, 1])
]
for i, (metric, title, ax) in enumerate(metrics):
sns.barplot(x=metric, y='Method', data=df_plot, ax=ax, palette=palettes[i])
ax.set_title(title, fontsize=16, weight='bold')
ax.set_xlabel('')
ax.set_ylabel('')
for p in ax.patches:
width = p.get_width()
ax.text(width * 1.01, p.get_y() + p.get_height() / 2,
f'{width:,.2f}',
va='center', fontsize=11)
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.savefig("static/images/kpi_dashboard.png", bbox_inches='tight')
print("\n✅ A KPI dashboard graph has been saved as 'kpi_dashboard.png'")
def run_sensitivity_analysis(best_params, base_irr):
global PRODUCT_PRICES_USD_PER_TON, STRATEGY_DATA
print("\n--- Sensitivity Analysis on Best Scenario ---")
print(f"Analyzing sensitivity around the base IRR of {base_irr:,.2f}%")
sensitivity_vars = {
'Byproduct Caustic Soda Price': ('price', 'byproduct_caustic_soda'),
'Sourcing Cost Integrated': ('strategy', 'Integrated_Production', 'sourcing_cost_per_ton_pvc'),
'Domestic PVC S70 Price': ('price', 'pvc_s70_domestic')
}
variations = [-0.20, -0.10, 0.10, 0.20]
results = []
original_prices = copy.deepcopy(PRODUCT_PRICES_USD_PER_TON)
original_strategies = copy.deepcopy(STRATEGY_DATA)
for key, path in sensitivity_vars.items():
for var in variations:
PRODUCT_PRICES_USD_PER_TON = copy.deepcopy(original_prices)
STRATEGY_DATA = copy.deepcopy(original_strategies)
if path[0] == 'price':
base_value = PRODUCT_PRICES_USD_PER_TON[path[1]]
PRODUCT_PRICES_USD_PER_TON[path[1]] = base_value * (1 + var)
else:
base_value = STRATEGY_DATA[path[1]][path[2]]
STRATEGY_DATA[path[1]][path[2]] = base_value * (1 + var)
kpis = calculate_project_kpis(**best_params)
results.append({
'Variable': key, 'Change': f'{var:+.0%}',
'New IRR (%)': kpis['irr'], 'IRR Delta (%)': kpis['irr'] - base_irr
})
PRODUCT_PRICES_USD_PER_TON = original_prices
STRATEGY_DATA = original_strategies
df_sensitivity = pd.DataFrame(results)
print("\n✅ **Sensitivity Analysis Results**")
print("="*60)
print(df_sensitivity.to_string(index=False))
print("="*60)
tornado_data = []
for var_name in df_sensitivity['Variable'].unique():
subset = df_sensitivity[df_sensitivity['Variable'] == var_name]
min_delta = subset['IRR Delta (%)'].min()
max_delta = subset['IRR Delta (%)'].max()
tornado_data.append({
'Variable': var_name,
'Min_Delta': min_delta,
'Max_Delta': max_delta,
'Range': max_delta - min_delta
})
df_tornado = pd.DataFrame(tornado_data).sort_values('Range', ascending=True)
fig, ax = plt.subplots(figsize=(12, 8))
y = np.arange(len(df_tornado))
ax.barh(y, df_tornado['Max_Delta'], color='mediumseagreen', label='Positive Impact')
ax.barh(y, df_tornado['Min_Delta'], color='lightcoral', label='Negative Impact')
ax.set_yticks(y)
ax.set_yticklabels(df_tornado['Variable'], fontsize=12)
ax.axvline(0, color='black', linewidth=0.8, linestyle='--')
ax.set_title('Tornado Chart: IRR Sensitivity to Key Variables', fontsize=18, pad=20, weight='bold')
ax.set_xlabel(f'Change in IRR (%) from Base IRR ({base_irr:.2f}%)', fontsize=14)
ax.set_ylabel('Variable', fontsize=14)
ax.legend()
ax.grid(axis='x', linestyle='--', alpha=0.7)
for i, (p, n) in enumerate(zip(df_tornado['Max_Delta'], df_tornado['Min_Delta'])):
ax.text(p, i, f' +{p:.2f}%', va='center', ha='left', color='darkgreen')
ax.text(n, i, f' {n:.2f}%', va='center', ha='right', color='darkred')
plt.tight_layout()
plt.savefig("static/images/sensitivity_analysis_tornado.png", bbox_inches='tight')
print("\n✅ A sensitivity analysis Tornado chart has been saved as 'sensitivity_analysis_tornado.png'")
if __name__ == "__main__":
optimization_results = run_optimizations_without_ml()
df_results = pd.DataFrame(optimization_results).sort_values(by="irr", ascending=False).reset_index(drop=True)
df_results.round(2)
display_and_save_results(df_results)
create_kpi_comparison_dashboard(df_results)
if not df_results.empty:
best_scenario = df_results.iloc[0]
run_sensitivity_analysis(best_scenario['Params'], best_scenario['irr'])