GIGAParviz commited on
Commit
63a714e
·
verified ·
1 Parent(s): c22a5ed

Update main.py

Browse files
Files changed (1) hide show
  1. main.py +3 -3
main.py CHANGED
@@ -50,7 +50,7 @@ PRODUCT_PRICES_USD_PER_TON = {
50
 
51
  OPTIMIZATION_SPACE = {
52
  'capacity_kta': (500, 600),
53
- 'technology': ["Engro_Pakistan"], #, "Shin_Etsu_2004"],
54
  'sourcing_strategy': ['Integrated_Production'],
55
  'export_market_mix': (0.6, 0.8),
56
  'sell_byproducts': [True]
@@ -125,7 +125,7 @@ def run_genetic_algorithm():
125
  population = [{k: random.choice(v) if isinstance(v, list) else random.uniform(*v) for k,v in OPTIMIZATION_SPACE.items()} for _ in range(40)]
126
  best_overall_individual = None
127
  best_overall_fitness = -float('inf')
128
- for _ in range(70):
129
  fitnesses = [calculate_project_kpis(**ind)['irr'] for ind in population]
130
  if max(fitnesses) > best_overall_fitness:
131
  best_overall_fitness = max(fitnesses)
@@ -154,7 +154,7 @@ def run_bayesian_optimization():
154
  @use_named_args(skopt_space)
155
  def objective(**params):
156
  return -calculate_project_kpis(**params)['irr']
157
- res = gp_minimize(objective, skopt_space, n_calls=80, random_state=42, n_initial_points=20)
158
  best_params = {space.name: val for space, val in zip(skopt_space, res.x)}
159
  kpis = calculate_project_kpis(**best_params)
160
  return {"Method": "Bayesian Opt", **kpis, "Params": best_params}
 
50
 
51
  OPTIMIZATION_SPACE = {
52
  'capacity_kta': (500, 600),
53
+ 'technology': ["Engro_Pakistan", "Shin_Etsu_2004"],
54
  'sourcing_strategy': ['Integrated_Production'],
55
  'export_market_mix': (0.6, 0.8),
56
  'sell_byproducts': [True]
 
125
  population = [{k: random.choice(v) if isinstance(v, list) else random.uniform(*v) for k,v in OPTIMIZATION_SPACE.items()} for _ in range(40)]
126
  best_overall_individual = None
127
  best_overall_fitness = -float('inf')
128
+ for _ in range(80):
129
  fitnesses = [calculate_project_kpis(**ind)['irr'] for ind in population]
130
  if max(fitnesses) > best_overall_fitness:
131
  best_overall_fitness = max(fitnesses)
 
154
  @use_named_args(skopt_space)
155
  def objective(**params):
156
  return -calculate_project_kpis(**params)['irr']
157
+ res = gp_minimize(objective, skopt_space, n_calls=90, random_state=42, n_initial_points=20)
158
  best_params = {space.name: val for space, val in zip(skopt_space, res.x)}
159
  kpis = calculate_project_kpis(**best_params)
160
  return {"Method": "Bayesian Opt", **kpis, "Params": best_params}