File size: 15,671 Bytes
b2f81c0 28a1fe1 b2f81c0 63a714e b2f81c0 c22a5ed b2f81c0 63a714e b2f81c0 63a714e b2f81c0 c22a5ed b2f81c0 3fde923 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import pandas as pd
import numpy as np
import random
import copy
import optuna
import matplotlib.pyplot as plt
import seaborn as sns
from skopt import gp_minimize
from skopt.space import Real, Categorical
from skopt.utils import use_named_args
from statsmodels.tsa.arima.model import ARIMA
import numpy_financial as npf
optuna.logging.set_verbosity(optuna.logging.WARNING)
PROJECT_YEARS = 15
BASE_CAPACITY_KTA = 300
INFLATION_RATE = 0.015
TAX_RATE = 0.10
DEPRECIATION_YEARS = 15
TECHNOLOGY_DATA = {
"JNC": {"capex_base_M": 180.0, "opex_base_cents_kg": 150.0},
"Hoechst_AG": {"capex_base_M": 230.0, "opex_base_cents_kg": 155.0},
"BF_Goodrich": {"capex_base_M": 280.0, "opex_base_cents_kg": 160.0},
"Shin_Etsu_1991": {"capex_base_M": 260.0, "opex_base_cents_kg": 155.0},
"Shin_Etsu_2004": {"capex_base_M": 1500.0, "opex_base_cents_kg": 150.0},
"Vinnolit": {"capex_base_M": 240.0, "opex_base_cents_kg": 155.0},
"QVC_Qatar": {"capex_base_M": 200.0, "opex_base_cents_kg": 145.0},
"SP_Chemicals": {"capex_base_M": 250.0, "opex_base_cents_kg": 145.0},
"Engro_Pakistan": {"capex_base_M": 1400.0, "opex_base_cents_kg": 155.0},
"Formosa_BR_USA": {"capex_base_M": 380.0, "opex_base_cents_kg": 150.0},
"Shintech_USA_Exp": {"capex_base_M": 1700.0, "opex_base_cents_kg": 160.0},
"Zhongtai_China": {"capex_base_M": 1100.0, "opex_base_cents_kg": 155.0},
"Shintech_USA_2021": {"capex_base_M": 1700.0, "opex_base_cents_kg": 160.0},
"Reliance_India_2024": {"capex_base_M": 2200.0, "opex_base_cents_kg": 155.0},
"Orbia_Germany_2023": {"capex_base_M": 180.0, "opex_base_cents_kg": 155.0},
"Westlake_USA_2022": {"capex_base_M": 850.0, "opex_base_cents_kg": 160.0}
}
STRATEGY_DATA = {
'Integrated_Production': {'sourcing_cost_per_ton_pvc': 450.0, 'byproducts': {'caustic_soda_ton': 1.1, 'surplus_edc_ton': 0.523}},
'Purchase_VCM': {'sourcing_cost_per_ton_pvc': 650.0, 'byproducts': {'caustic_soda_ton': 0, 'surplus_edc_ton': 0}}
}
PRODUCT_PRICES_USD_PER_TON = {
'pvc_s65_export': 1100, 'pvc_s70_domestic': 950,
'byproduct_caustic_soda': 450, 'byproduct_surplus_edc': 170
}
OPTIMIZATION_SPACE = {
'capacity_kta': (500, 600),
'technology': ["Engro_Pakistan", "Shin_Etsu_2004"],
'sourcing_strategy': ['Integrated_Production'],
'export_market_mix': (0.6, 0.8),
'sell_byproducts': [True]
}
def forecast_prices(base_price, years=PROJECT_YEARS, cagr=0.04):
historical = [base_price * (1 + cagr + random.uniform(-0.03, 0.03)) ** i for i in range(-5, 0)]
model = ARIMA(historical, order=(1, 1, 0))
fit = model.fit()
forecast = fit.forecast(steps=years)
return [p * (1 + INFLATION_RATE) ** i for i, p in enumerate(forecast)]
def calculate_project_kpis(**params):
tech_data = TECHNOLOGY_DATA[params['technology']]
scaling_factor = (params['capacity_kta'] / BASE_CAPACITY_KTA) ** 0.65
total_capex = tech_data['capex_base_M'] * scaling_factor * 1_000_000
capacity_tons = params['capacity_kta'] * 1000
price_s65_forecast = forecast_prices(PRODUCT_PRICES_USD_PER_TON['pvc_s65_export'])
price_s70_forecast = forecast_prices(PRODUCT_PRICES_USD_PER_TON['pvc_s70_domestic'])
byproduct_caustic_forecast = forecast_prices(PRODUCT_PRICES_USD_PER_TON['byproduct_caustic_soda'])
byproduct_edc_forecast = forecast_prices(PRODUCT_PRICES_USD_PER_TON['byproduct_surplus_edc'])
cash_flows = [-total_capex]
depreciation_annual = total_capex / DEPRECIATION_YEARS
for year in range(1, PROJECT_YEARS + 1):
infl_factor = (1 + INFLATION_RATE) ** (year - 1)
price_s65 = price_s65_forecast[year - 1]
price_s70 = price_s70_forecast[year - 1] * 0.95 if params['capacity_kta'] >= 550 else price_s70_forecast[year - 1]
revenue_export = (capacity_tons * params['export_market_mix']) * price_s65
revenue_domestic = (capacity_tons * (1 - params['export_market_mix'])) * price_s70
pvc_revenue = revenue_export + revenue_domestic
byproduct_revenue = 0
if params['sourcing_strategy'] == 'Integrated_Production' and params['sell_byproducts']:
byproducts = STRATEGY_DATA['Integrated_Production']['byproducts']
byproduct_revenue += (byproducts['caustic_soda_ton'] * capacity_tons * byproduct_caustic_forecast[year - 1])
byproduct_revenue += (byproducts['surplus_edc_ton'] * capacity_tons * byproduct_edc_forecast[year - 1])
total_revenue = pvc_revenue + byproduct_revenue
opex_sourcing = STRATEGY_DATA['Integrated_Production']['sourcing_cost_per_ton_pvc'] * capacity_tons * infl_factor
opex_base = (tech_data['opex_base_cents_kg'] / 100) * capacity_tons * infl_factor
total_opex = opex_sourcing + opex_base
ebitda = total_revenue - total_opex
taxable_income = ebitda - depreciation_annual
taxes = max(taxable_income * TAX_RATE, 0)
net_income = taxable_income - taxes
free_cash_flow = net_income + depreciation_annual
cash_flows.append(free_cash_flow)
irr = npf.irr(cash_flows) * 100 if npf.irr(cash_flows) > 0 else -1.0
cumulative_cash_flow = np.cumsum(cash_flows)
payback_period_years = np.where(cumulative_cash_flow > 0)[0]
payback_period = payback_period_years[0] + 1 if len(payback_period_years) > 0 else float('inf')
annual_profit = np.mean([cf for cf in cash_flows[1:] if cf > 0])
return {"irr": irr, "annual_profit": annual_profit, "total_capex": total_capex, "payback_period": payback_period}
def run_optimizations_without_ml():
print("\n--- Running Optimization Algorithms ---")
results = []
results.append(run_bayesian_optimization())
results.append(run_genetic_algorithm())
results.append(run_optuna_direct())
return results
def run_genetic_algorithm():
print("Running Genetic Algorithm (GA)...")
population = [{k: random.choice(v) if isinstance(v, list) else random.uniform(*v) for k,v in OPTIMIZATION_SPACE.items()} for _ in range(40)]
best_overall_individual = None
best_overall_fitness = -float('inf')
for _ in range(80):
fitnesses = [calculate_project_kpis(**ind)['irr'] for ind in population]
if max(fitnesses) > best_overall_fitness:
best_overall_fitness = max(fitnesses)
best_overall_individual = population[np.argmax(fitnesses)]
selected = [max(random.sample(list(zip(population, fitnesses)), 5), key=lambda i: i[1])[0] for _ in range(50)]
next_gen = []
for i in range(0, 50, 2):
p1, p2 = selected[i], selected[i+1]
c1, c2 = copy.deepcopy(p1), copy.deepcopy(p2)
if random.random() < 0.9: c1['technology'], c2['technology'] = p2['technology'], c1['technology']
if random.random() < 0.2: c1['export_market_mix'] = random.uniform(*OPTIMIZATION_SPACE['export_market_mix'])
next_gen.extend([c1, c2])
population = next_gen
kpis = calculate_project_kpis(**best_overall_individual)
return {"Method": "Genetic Algorithm", **kpis, "Params": best_overall_individual}
def run_bayesian_optimization():
print("Running Bayesian Optimization...")
skopt_space = [
Real(OPTIMIZATION_SPACE['capacity_kta'][0], OPTIMIZATION_SPACE['capacity_kta'][1], name='capacity_kta'),
Categorical(OPTIMIZATION_SPACE['technology'], name='technology'),
Categorical(OPTIMIZATION_SPACE['sourcing_strategy'], name='sourcing_strategy'),
Real(OPTIMIZATION_SPACE['export_market_mix'][0], OPTIMIZATION_SPACE['export_market_mix'][1], name='export_market_mix'),
Categorical(OPTIMIZATION_SPACE['sell_byproducts'], name='sell_byproducts')
]
@use_named_args(skopt_space)
def objective(**params):
return -calculate_project_kpis(**params)['irr']
res = gp_minimize(objective, skopt_space, n_calls=90, random_state=42, n_initial_points=20)
best_params = {space.name: val for space, val in zip(skopt_space, res.x)}
kpis = calculate_project_kpis(**best_params)
return {"Method": "Bayesian Opt", **kpis, "Params": best_params}
def run_optuna_direct():
print("Running Optuna (TPE)...")
def objective(trial):
params = {
"capacity_kta": trial.suggest_float("capacity_kta", *OPTIMIZATION_SPACE['capacity_kta']),
"technology": trial.suggest_categorical("technology", OPTIMIZATION_SPACE['technology']),
"sourcing_strategy": trial.suggest_categorical("sourcing_strategy", OPTIMIZATION_SPACE['sourcing_strategy']),
"export_market_mix": trial.suggest_float("export_market_mix", *OPTIMIZATION_SPACE['export_market_mix']),
"sell_byproducts": trial.suggest_categorical("sell_byproducts", OPTIMIZATION_SPACE['sell_byproducts'])
}
return calculate_project_kpis(**params)['irr']
study = optuna.create_study(direction="maximize")
study.optimize(objective, n_trials=150, n_jobs=-1)
kpis = calculate_project_kpis(**study.best_params)
return {"Method": "Optuna (TPE - Direct)", **kpis, "Params": study.best_params}
def display_and_save_results(df_results):
print("\n--- Final Results and Comparison ---")
df_display = pd.DataFrame()
df_display['Method'] = df_results['Method']
df_display['Optimal IRR (%)'] = df_results['irr'].map('{:,.2f}%'.format)
df_display['Annual Profit ($M)'] = (df_results['annual_profit'] / 1_000_000).map('{:,.1f}'.format)
df_display['CAPEX ($M)'] = (df_results['total_capex'] / 1_000_000).map('{:,.1f}'.format)
df_display['Payback (Yrs)'] = df_results['payback_period'].map('{:,.1f}'.format)
param_df = pd.DataFrame(df_results['Params'].tolist())
param_df['capacity_kta'] = param_df['capacity_kta'].round(1)
param_df['export_market_mix'] = (param_df['export_market_mix'] * 100).round(1).astype(str) + '%'
df_display = pd.concat([df_display, param_df.rename(columns={
'capacity_kta': 'Capacity (KTA)', 'technology': 'Technology', 'sourcing_strategy': 'Sourcing',
'export_market_mix': 'Export Mix', 'sell_byproducts': 'Sell Byproducts'
})], axis=1)
print("\n✅ **Final Comparison of Optimal Scenarios (Sorted by Best IRR)**")
print("="*120)
print(df_display.to_string(index=False))
print("="*120)
df_display.to_csv("results.csv", index=False, encoding='utf-8-sig')
def create_kpi_comparison_dashboard(df_results):
print("\n--- Generating KPI Comparison Dashboard ---")
df_plot = df_results.sort_values(by='irr', ascending=False)
df_plot['annual_profit_M'] = df_plot['annual_profit'] / 1_000_000
df_plot['total_capex_M'] = df_plot['total_capex'] / 1_000_000
fig, axes = plt.subplots(2, 2, figsize=(20, 14))
fig.suptitle('Dashboard: Comprehensive Comparison of Optimization Methods', fontsize=22, weight='bold')
palettes = ['viridis', 'plasma', 'magma', 'cividis']
metrics = [
('irr', 'Optimal IRR (%)', axes[0, 0]),
('annual_profit_M', 'Annual Profit ($M)', axes[0, 1]),
('total_capex_M', 'Total CAPEX ($M)', axes[1, 0]),
('payback_period', 'Payback Period (Years)', axes[1, 1])
]
for i, (metric, title, ax) in enumerate(metrics):
sns.barplot(x=metric, y='Method', data=df_plot, ax=ax, palette=palettes[i])
ax.set_title(title, fontsize=16, weight='bold')
ax.set_xlabel('')
ax.set_ylabel('')
for p in ax.patches:
width = p.get_width()
ax.text(width * 1.01, p.get_y() + p.get_height() / 2,
f'{width:,.2f}',
va='center', fontsize=11)
plt.tight_layout(rect=[0, 0.03, 1, 0.95])
plt.savefig("static/images/kpi_dashboard.png", bbox_inches='tight')
print("\n✅ A KPI dashboard graph has been saved as 'kpi_dashboard.png'")
def run_sensitivity_analysis(best_params, base_irr):
global PRODUCT_PRICES_USD_PER_TON, STRATEGY_DATA
print("\n--- Sensitivity Analysis on Best Scenario ---")
print(f"Analyzing sensitivity around the base IRR of {base_irr:,.2f}%")
sensitivity_vars = {
'Byproduct Caustic Soda Price': ('price', 'byproduct_caustic_soda'),
'Sourcing Cost Integrated': ('strategy', 'Integrated_Production', 'sourcing_cost_per_ton_pvc'),
'Domestic PVC S70 Price': ('price', 'pvc_s70_domestic')
}
variations = [-0.20, -0.10, 0.10, 0.20]
results = []
original_prices = copy.deepcopy(PRODUCT_PRICES_USD_PER_TON)
original_strategies = copy.deepcopy(STRATEGY_DATA)
for key, path in sensitivity_vars.items():
for var in variations:
PRODUCT_PRICES_USD_PER_TON = copy.deepcopy(original_prices)
STRATEGY_DATA = copy.deepcopy(original_strategies)
if path[0] == 'price':
base_value = PRODUCT_PRICES_USD_PER_TON[path[1]]
PRODUCT_PRICES_USD_PER_TON[path[1]] = base_value * (1 + var)
else:
base_value = STRATEGY_DATA[path[1]][path[2]]
STRATEGY_DATA[path[1]][path[2]] = base_value * (1 + var)
kpis = calculate_project_kpis(**best_params)
results.append({
'Variable': key, 'Change': f'{var:+.0%}',
'New IRR (%)': kpis['irr'], 'IRR Delta (%)': kpis['irr'] - base_irr
})
PRODUCT_PRICES_USD_PER_TON = original_prices
STRATEGY_DATA = original_strategies
df_sensitivity = pd.DataFrame(results)
print("\n✅ **Sensitivity Analysis Results**")
print("="*60)
print(df_sensitivity.to_string(index=False))
print("="*60)
tornado_data = []
for var_name in df_sensitivity['Variable'].unique():
subset = df_sensitivity[df_sensitivity['Variable'] == var_name]
min_delta = subset['IRR Delta (%)'].min()
max_delta = subset['IRR Delta (%)'].max()
tornado_data.append({
'Variable': var_name,
'Min_Delta': min_delta,
'Max_Delta': max_delta,
'Range': max_delta - min_delta
})
df_tornado = pd.DataFrame(tornado_data).sort_values('Range', ascending=True)
fig, ax = plt.subplots(figsize=(12, 8))
y = np.arange(len(df_tornado))
ax.barh(y, df_tornado['Max_Delta'], color='mediumseagreen', label='Positive Impact')
ax.barh(y, df_tornado['Min_Delta'], color='lightcoral', label='Negative Impact')
ax.set_yticks(y)
ax.set_yticklabels(df_tornado['Variable'], fontsize=12)
ax.axvline(0, color='black', linewidth=0.8, linestyle='--')
ax.set_title('Tornado Chart: IRR Sensitivity to Key Variables', fontsize=18, pad=20, weight='bold')
ax.set_xlabel(f'Change in IRR (%) from Base IRR ({base_irr:.2f}%)', fontsize=14)
ax.set_ylabel('Variable', fontsize=14)
ax.legend()
ax.grid(axis='x', linestyle='--', alpha=0.7)
for i, (p, n) in enumerate(zip(df_tornado['Max_Delta'], df_tornado['Min_Delta'])):
ax.text(p, i, f' +{p:.2f}%', va='center', ha='left', color='darkgreen')
ax.text(n, i, f' {n:.2f}%', va='center', ha='right', color='darkred')
plt.tight_layout()
plt.savefig("static/images/sensitivity_analysis_tornado.png", bbox_inches='tight')
print("\n✅ A sensitivity analysis Tornado chart has been saved as 'sensitivity_analysis_tornado.png'")
if __name__ == "__main__":
optimization_results = run_optimizations_without_ml()
df_results = pd.DataFrame(optimization_results).sort_values(by="irr", ascending=False).reset_index(drop=True)
df_results.round(2)
display_and_save_results(df_results)
create_kpi_comparison_dashboard(df_results)
if not df_results.empty:
best_scenario = df_results.iloc[0]
run_sensitivity_analysis(best_scenario['Params'], best_scenario['irr']) |