File size: 28,832 Bytes
2701e1f
d7c623e
2701e1f
fd4abdb
 
 
2701e1f
 
 
 
 
 
 
 
 
d7c623e
2701e1f
d7c623e
2701e1f
 
 
 
 
 
fd4abdb
d7c623e
2701e1f
 
 
 
 
 
 
 
 
42dccc7
953982d
2701e1f
 
 
ab2fc5d
 
21e9173
2701e1f
 
ab2fc5d
 
 
2701e1f
ab2fc5d
 
2701e1f
 
 
ab2fc5d
2701e1f
ab2fc5d
2701e1f
 
 
ab2fc5d
 
2701e1f
ab2fc5d
2701e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7c623e
ab2fc5d
2701e1f
ab2fc5d
 
2701e1f
ab2fc5d
2701e1f
 
 
 
ab2fc5d
d7c623e
f736eae
 
 
2701e1f
42dccc7
 
 
f736eae
d7c623e
f736eae
 
2701e1f
 
f736eae
2701e1f
 
 
 
 
 
 
fd4abdb
 
 
2701e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42dccc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd4abdb
 
2701e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd4abdb
2701e1f
fd4abdb
 
 
2701e1f
 
 
 
fd4abdb
2701e1f
 
fd4abdb
 
2701e1f
 
 
 
fd4abdb
 
 
 
 
2701e1f
 
 
 
fd4abdb
2701e1f
 
 
fd4abdb
2701e1f
 
36ce571
 
 
 
 
 
 
 
2701e1f
 
 
 
d7c623e
2701e1f
 
 
 
d7c623e
36ce571
2701e1f
 
 
 
 
 
 
 
 
d7c623e
 
2701e1f
d7c623e
 
2701e1f
 
 
 
 
 
 
 
 
 
 
 
42dccc7
2701e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36ce571
 
 
 
 
 
 
 
 
 
 
 
2701e1f
 
 
 
42dccc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36ce571
42dccc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2701e1f
5a3bb22
 
 
 
 
36ce571
 
 
 
5a3bb22
36ce571
 
 
 
 
 
 
5a3bb22
36ce571
 
5a3bb22
 
 
 
 
 
 
 
 
 
 
36ce571
 
 
 
5a3bb22
50604bb
 
5a3bb22
50604bb
 
 
 
 
d6d47ed
 
5a3bb22
2701e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d7c623e
2701e1f
42dccc7
2701e1f
42dccc7
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
# ltx_server_refactored.py — VideoService (Modular Version with Simple Overlap Chunking)

# --- 0. WARNINGS E AMBIENTE ---
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", message=".*")
from huggingface_hub import logging
logging.set_verbosity_error()
logging.set_verbosity_warning()
logging.set_verbosity_info()
logging.set_verbosity_debug()
LTXV_DEBUG=1
LTXV_FRAME_LOG_EVERY=8
import os, subprocess, shlex, tempfile
import torch
import json
import numpy as np
import random
import os
import shlex
import yaml
from typing import List, Dict
from pathlib import Path
import imageio
from PIL import Image
import tempfile
from huggingface_hub import hf_hub_download
import sys
import subprocess
import gc
import shutil
import contextlib
import time
import traceback
from api.gpu_manager import gpu_manager
from einops import rearrange
import torch.nn.functional as F
from managers.vae_manager import vae_manager_singleton
from tools.video_encode_tool import video_encode_tool_singleton
DEPS_DIR = Path("/data")
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"

# (Todas as funções de setup, helpers e inicialização da classe permanecem inalteradas)
# ... (run_setup, add_deps_to_path, _query_gpu_processes_via_nvml, etc.)
def run_setup():
    setup_script_path = "setup.py"
    if not os.path.exists(setup_script_path):
        print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.")
        return
    try:
        print("[DEBUG] Executando setup.py para dependências...")
        subprocess.run([sys.executable, setup_script_path], check=True)
        print("[DEBUG] Setup concluído com sucesso.")
    except subprocess.CalledProcessError as e:
        print(f"[DEBUG] ERRO no setup.py (code {e.returncode}). Abortando.")
        sys.exit(1)
if not LTX_VIDEO_REPO_DIR.exists():
    print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Rodando setup...")
    run_setup()
def add_deps_to_path():
    repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
    if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
        sys.path.insert(0, repo_path)
        print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}")
def calculate_padding(orig_h, orig_w, target_h, target_w):
    pad_h = target_h - orig_h
    pad_w = target_w - orig_w
    pad_top = pad_h // 2
    pad_bottom = pad_h - pad_top
    pad_left = pad_w // 2
    pad_right = pad_w - pad_left
    return (pad_left, pad_right, pad_top, pad_bottom)
def log_tensor_info(tensor, name="Tensor"):
    if not isinstance(tensor, torch.Tensor):
        print(f"\n[INFO] '{name}' não é tensor.")
        return
    print(f"\n--- Tensor: {name} ---")
    print(f"  - Shape: {tuple(tensor.shape)}")
    print(f"  - Dtype: {tensor.dtype}")
    print(f"  - Device: {tensor.device}")
    if tensor.numel() > 0:
        try:
            print(f"  - Min: {tensor.min().item():.4f}  Max: {tensor.max().item():.4f}  Mean: {tensor.mean().item():.4f}")
        except Exception:
            pass
    print("------------------------------------------\n")

add_deps_to_path()
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
from ltx_video.models.autoencoders.vae_encode import un_normalize_latents, normalize_latents
from ltx_video.pipelines.pipeline_ltx_video import adain_filter_latent
from api.ltx.inference import (
    create_ltx_video_pipeline,
    create_latent_upsampler,
    load_image_to_tensor_with_resize_and_crop,
    seed_everething,
)

class VideoService:
    def __init__(self):
        t0 = time.perf_counter()
        print("[DEBUG] Inicializando VideoService...")
        self.device = gpu_manager.get_ltx_device()
        print(f"[DEBUG] LTX foi alocado para o dispositivo: {self.device}")
        
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.config = self._load_config()
        self.pipeline, self.latent_upsampler = self._load_models()
        self.pipeline.to(self.device)
        if self.latent_upsampler:
            self.latent_upsampler.to(self.device)
        self._apply_precision_policy()
        vae_manager_singleton.attach_pipeline(
            self.pipeline,
            device=self.device,
            autocast_dtype=self.runtime_autocast_dtype
        )
        self._tmp_dirs = set()
        print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s")

    def _load_config(self):
        base = LTX_VIDEO_REPO_DIR / "configs"
        config_path = base / "ltxv-13b-0.9.8-distilled-fp8.yaml"
        with open(config_path, "r") as file:
            return yaml.safe_load(file)

    def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True):
        print("[DEBUG] Finalize: iniciando limpeza...")
        keep = set(keep_paths or []); extras = set(extra_paths or [])
        gc.collect()
        try:
            if clear_gpu and torch.cuda.is_available():
                torch.cuda.empty_cache()
                try:
                    torch.cuda.ipc_collect()
                except Exception:
                    pass
        except Exception as e:
            print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}")
        try:
            self._log_gpu_memory("Após finalize")
        except Exception as e:
            print(f"[DEBUG] Log GPU pós-finalize falhou: {e}")

    def move_to_device(self, device):
        """Move os modelos do pipeline para o dispositivo especificado."""
        print(f"[LTX] Movendo modelos para {device}...")
        self.pipeline.to(device)
        if self.latent_upsampler:
            self.latent_upsampler.to(device)
        self.device = device
        
    def move_to_cpu(self):
        """Move os modelos para a CPU para liberar VRAM."""
        self.move_to_device(torch.device("cpu"))
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
    
    def _load_models(self):
        t0 = time.perf_counter()
        LTX_REPO = "Lightricks/LTX-Video"
        print("[DEBUG] Baixando checkpoint principal...")
        distilled_model_path = hf_hub_download(
            repo_id=LTX_REPO,
            filename=self.config["checkpoint_path"],
            local_dir=os.getenv("HF_HOME"),
            cache_dir=os.getenv("HF_HOME_CACHE"),
            token=os.getenv("HF_TOKEN"),
        )
        self.config["checkpoint_path"] = distilled_model_path
        print(f"[DEBUG] Checkpoint em: {distilled_model_path}")

        print("[DEBUG] Baixando upscaler espacial...")
        spatial_upscaler_path = hf_hub_download(
            repo_id=LTX_REPO,
            filename=self.config["spatial_upscaler_model_path"],
            local_dir=os.getenv("HF_HOME"),
            cache_dir=os.getenv("HF_HOME_CACHE"),
            token=os.getenv("HF_TOKEN")
        )
        self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
        print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}")

        print("[DEBUG] Construindo pipeline...")
        pipeline = create_ltx_video_pipeline(
            ckpt_path=self.config["checkpoint_path"],
            precision=self.config["precision"],
            text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
            sampler=self.config["sampler"],
            device="cpu",
            enhance_prompt=False,
            prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
            prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
        )
        print("[DEBUG] Pipeline pronto.")

        latent_upsampler = None
        if self.config.get("spatial_upscaler_model_path"):
            print("[DEBUG] Construindo latent_upsampler...")
            latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
            print("[DEBUG] Upsampler pronto.")
        print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s")
        return pipeline, latent_upsampler

    def _apply_precision_policy(self):
        prec = str(self.config.get("precision", "")).lower()
        self.runtime_autocast_dtype = torch.float32
        if prec in ["float8_e4m3fn", "bfloat16"]:
            self.runtime_autocast_dtype = torch.bfloat16
        elif prec == "mixed_precision":
            self.runtime_autocast_dtype = torch.float16

    def _register_tmp_dir(self, d: str):
        if d and os.path.isdir(d):
            self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}")

    @torch.no_grad()
    def _upsample_latents_internal(self, latents: torch.Tensor) -> torch.Tensor:
        try:
            if not self.latent_upsampler:
                raise ValueError("Latent Upsampler não está carregado.")
            latents_unnormalized = un_normalize_latents(latents, self.pipeline.vae, vae_per_channel_normalize=True)
            upsampled_latents = self.latent_upsampler(latents_unnormalized)
            return normalize_latents(upsampled_latents, self.pipeline.vae, vae_per_channel_normalize=True)
        except Exception as e:
            pass
        finally:
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()
            self.finalize(keep_paths=[])

    def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
        tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
        tensor = torch.nn.functional.pad(tensor, padding_values)
        return tensor.to(self.device, dtype=self.runtime_autocast_dtype)

            
    def _save_and_log_video(self, pixel_tensor, base_filename, fps, temp_dir, results_dir, used_seed, progress_callback=None):
        output_path = os.path.join(temp_dir, f"{base_filename}_{used_seed}.mp4")
        video_encode_tool_singleton.save_video_from_tensor(
            pixel_tensor, output_path, fps=fps, progress_callback=progress_callback
        )
        final_path = os.path.join(results_dir, f"{base_filename}_{used_seed}.mp4")
        shutil.move(output_path, final_path)
        print(f"[DEBUG] Vídeo salvo em: {final_path}")
        return final_path

    # ==============================================================================
    # --- FUNÇÕES MODULARES COM A LÓGICA DE CHUNKING SIMPLIFICADA ---
    # ==============================================================================

    def prepare_condition_items(self, items_list: List, height: int, width: int, num_frames: int):
        if not items_list: return []
        height_padded = ((height - 1) // 8 + 1) * 8
        width_padded = ((width - 1) // 8 + 1) * 8
        padding_values = calculate_padding(height, width, height_padded, width_padded)
        conditioning_items = []
        for media, frame, weight in items_list:
            tensor = self._prepare_conditioning_tensor(media, height, width, padding_values) if isinstance(media, str) else media.to(self.device, dtype=self.runtime_autocast_dtype)
            safe_frame = max(0, min(int(frame), num_frames - 1))
            conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
        return conditioning_items

    def generate_low_old(self, prompt, negative_prompt, height, width, duration, guidance_scale, seed, conditioning_items=None):
        used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
        seed_everething(used_seed)
        FPS = 24.0
        actual_num_frames = max(9, int(round((round(duration * FPS) - 1) / 8.0) * 8 + 1))
        height_padded = ((height - 1) // 8 + 1) * 8
        width_padded = ((width - 1) // 8 + 1) * 8
        temp_dir = tempfile.mkdtemp(prefix="ltxv_low_"); self._register_tmp_dir(temp_dir)
        results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
        downscale_factor = self.config.get("downscale_factor", 0.6666666)
        vae_scale_factor = self.pipeline.vae_scale_factor
        x_width = int(width_padded * downscale_factor)
        downscaled_width = x_width - (x_width % vae_scale_factor)
        x_height = int(height_padded * downscale_factor)
        downscaled_height = x_height - (x_height % vae_scale_factor)
        first_pass_kwargs = {
            "prompt": prompt, "negative_prompt": negative_prompt, "height": downscaled_height, "width": downscaled_width,
            "num_frames": actual_num_frames, "frame_rate": int(FPS), "generator": torch.Generator(device=self.device).manual_seed(used_seed),
            "output_type": "latent", "conditioning_items": conditioning_items, "guidance_scale": float(guidance_scale),
            **(self.config.get("first_pass", {}))
        }
        try: 
            with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'):
                latents = self.pipeline(**first_pass_kwargs).images
                pixel_tensor = vae_manager_singleton.decode(latents.clone(), decode_timestep=float(self.config.get("decode_timestep", 0.05)))
                video_path = self._save_and_log_video(pixel_tensor, "low_res_video", FPS, temp_dir, results_dir, used_seed)
                latents_cpu = latents.detach().to("cpu")
                tensor_path = os.path.join(results_dir, f"latents_low_res_{used_seed}.pt")
                torch.save(latents_cpu, tensor_path)
            return video_path, tensor_path, used_seed
        
        except Exception as e:
            pass
        finally:
            torch.cuda.empty_cache()
            torch.cuda.ipc_collect()
            self.finalize(keep_paths=[])

    def _generate_single_chunk_low(self, prompt, negative_prompt, height, width, num_frames, guidance_scale, seed, initial_latent_condition=None, image_conditions=None, ltx_configs_override=None):
        """
        [NÓ DE GERAÇÃO]
        Gera um ÚNICO chunk de latentes brutos. Esta é a unidade de trabalho fundamental.
        """
        # (Esta função auxiliar permanece a mesma da nossa última versão, com a lógica de override)
        print("\n" + "-"*20 + " INÍCIO: _generate_single_chunk_low " + "-"*20)
        height_padded = ((height - 1) // 8 + 1) * 8
        width_padded = ((width - 1) // 8 + 1) * 8
        generator = torch.Generator(device=self.device).manual_seed(seed)
        
        downscale_factor = self.config.get("downscale_factor", 0.6666666)
        vae_scale_factor = self.pipeline.vae_scale_factor
        
        x_width = int(width_padded * downscale_factor)
        downscaled_width = x_width - (x_width % vae_scale_factor)
        x_height = int(height_padded * downscale_factor)
        downscaled_height = x_height - (x_height % vae_scale_factor)
        
        all_conditions = []
        if image_conditions: all_conditions.extend(image_conditions)
        if initial_latent_condition: all_conditions.append(initial_latent_condition)

        first_pass_config = self.config.get("first_pass", {}).copy()

        if ltx_configs_override:
            print("[DEBUG] Sobrepondo configurações do LTX com valores da UI...")
            if "first_pass_num_inference_steps" in ltx_configs_override:
                first_pass_config["num_inference_steps"] = ltx_configs_override["first_pass_num_inference_steps"]
            if "first_pass_guidance_scale" in ltx_configs_override:
                max_val = max(first_pass_config.get("guidance_scale", [1]))
                new_max_val = ltx_configs_override["first_pass_guidance_scale"]
                first_pass_config["guidance_scale"] = [new_max_val if x==max_val else x for x in first_pass_config["guidance_scale"]]
        
        first_pass_kwargs = {
            "prompt": prompt, "negative_prompt": negative_prompt, "height": downscaled_height, "width": downscaled_width,
            "num_frames": num_frames, "frame_rate": 24, "generator": generator, "output_type": "latent",
            "conditioning_items": all_conditions if all_conditions else None,
            **first_pass_config
        }
        # Removido guidance_scale daqui pois agora está dentro do first_pass_config
        if "guidance_scale" in first_pass_kwargs:
            del first_pass_kwargs['guidance_scale']

        with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
            latents_bruto = self.pipeline(**first_pass_kwargs).images
            log_tensor_info(latents_bruto, f"Latente Bruto Gerado para: '{prompt[:40]}...'")
        
        print("-" * 20 + " FIM: _generate_single_chunk_low " + "-"*20)
        return latents_bruto

    def generate_narrative_low(self, prompt: str, negative_prompt, height, width, duration, guidance_scale, seed, initial_image_conditions=None, overlap_frames: int = 8, ltx_configs_override: dict = None):
        """
        [ORQUESTRADOR NARRATIVO]
        Gera um vídeo em múltiplos chunks sequenciais a partir de um prompt com várias linhas.
        """
        print("\n" + "="*80)
        print("======           INICIANDO GERAÇÃO NARRATIVA EM CHUNKS (LOW-RES)           ======")
        print("="*80)
        
        used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
        seed_everething(used_seed)
        FPS = 24.0

        prompt_list = [p.strip() for p in prompt.splitlines() if p.strip()]
        num_chunks = len(prompt_list)
        if num_chunks == 0: raise ValueError("O prompt está vazio ou não contém linhas válidas.")
        
        total_actual_frames = max(9, int(round((round(duration * FPS) - 1) / 8.0) * 8 + 1))
        
        if num_chunks > 1:
            total_blocks = (total_actual_frames - 1) // 8
            blocks_per_chunk = total_blocks // num_chunks
            blocks_last_chunk = total_blocks - (blocks_per_chunk * (num_chunks - 1))
            frames_per_chunk = blocks_per_chunk * 8 + 1
            frames_per_chunk_last = blocks_last_chunk * 8 + 1
        else:
            frames_per_chunk = total_actual_frames
            frames_per_chunk_last = total_actual_frames
        
        frames_per_chunk = max(9, frames_per_chunk)
        frames_per_chunk_last = max(9, frames_per_chunk_last)
        
        poda_latents_num = overlap_frames // self.pipeline.video_scale_factor if self.pipeline.video_scale_factor > 0 else 0
        
        latentes_chunk_video = []
        condition_item_latent_overlap = None
        temp_dir = tempfile.mkdtemp(prefix="ltxv_narrative_"); self._register_tmp_dir(temp_dir)
        results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
        
        for i, chunk_prompt in enumerate(prompt_list):
            print(f"\n--- Gerando Chunk Narrativo {i+1}/{num_chunks}: '{chunk_prompt}' ---")

            current_image_conditions = []
            if initial_image_conditions:
                cond_item_original = initial_image_conditions[0]
                if i == 0:
                    current_image_conditions.append(cond_item_original)
                else:
                    cond_item_fraco = ConditioningItem(
                        media_item=cond_item_original.media_item, media_frame_number=0, conditioning_strength=0.1
                    )
                    current_image_conditions.append(cond_item_fraco)

            num_frames_para_gerar = frames_per_chunk_last if i == num_chunks - 1 else frames_per_chunk
            if i > 0 and poda_latents_num > 0:
                num_frames_para_gerar += overlap_frames
            
            latentes_bruto = self._generate_single_chunk_low(
                prompt=chunk_prompt, negative_prompt=negative_prompt, height=height, width=width,
                num_frames=num_frames_para_gerar, guidance_scale=guidance_scale, seed=used_seed + i,
                initial_latent_condition=condition_item_latent_overlap, image_conditions=current_image_conditions,
                ltx_configs_override=ltx_configs_override
            )
            
            if i > 0 and poda_latents_num > 0:
                 latentes_bruto = latentes_bruto[:, :, poda_latents_num:, :, :]

            latentes_podado = latentes_bruto.clone().detach()
            if i < num_chunks - 1 and poda_latents_num > 0:
                latentes_podado = latentes_bruto[:, :, :-poda_latents_num, :, :].clone()
                overlap_latents = latentes_bruto[:, :, -poda_latents_num:, :, :].clone()
                condition_item_latent_overlap = ConditioningItem(
                    media_item=overlap_latents, media_frame_number=0, conditioning_strength=1.0
                )
            latentes_chunk_video.append(latentes_podado)

        print("\n--- Finalizando Narrativa: Concatenando chunks ---")
        final_latents = torch.cat(latentes_chunk_video, dim=2)
        log_tensor_info(final_latents, "Tensor de Latentes Final Concatenado")
        
        tensor_path = os.path.join(results_dir, f"latents_narrative_{used_seed}.pt")
        torch.save(final_latents.cpu(), tensor_path)
        
        with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
            pixel_tensor = vae_manager_singleton.decode(final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05)))
            video_path = self._save_and_log_video(pixel_tensor, "narrative_video", FPS, temp_dir, results_dir, used_seed)
        
        self.finalize(keep_paths=[video_path, tensor_path])
        return video_path, tensor_path, used_seed
        
    def generate_single_low(self, prompt: str, negative_prompt, height, width, duration, guidance_scale, seed, initial_image_conditions=None, ltx_configs_override: dict = None):
        """
        [ORQUESTRADOR SIMPLES]
        Gera um vídeo completo em um único chunk. Ideal para prompts simples e curtos.
        """
        print("\n" + "="*80)
        print("======             INICIANDO GERAÇÃO SIMPLES EM CHUNK ÚNICO (LOW-RES)             ======")
        print("="*80)

        used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
        seed_everething(used_seed)
        FPS = 24.0

        total_actual_frames = max(9, int(round((round(duration * FPS) - 1) / 8.0) * 8 + 1))
        
        temp_dir = tempfile.mkdtemp(prefix="ltxv_single_"); self._register_tmp_dir(temp_dir)
        results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)

        # Chama a função de geração de chunk único para fazer todo o trabalho
        final_latents = self._generate_single_chunk_low(
            prompt=prompt,
            negative_prompt=negative_prompt,
            height=height, width=width,
            num_frames=total_actual_frames,
            guidance_scale=guidance_scale,
            seed=used_seed,
            image_conditions=initial_image_conditions,
            ltx_configs_override=ltx_configs_override
        )

        print("\n--- Finalizando Geração Simples: Salvando e decodificando ---")
        log_tensor_info(final_latents, "Tensor de Latentes Final")

        tensor_path = os.path.join(results_dir, f"latents_single_{used_seed}.pt")
        torch.save(final_latents.cpu(), tensor_path)

        with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
            pixel_tensor = vae_manager_singleton.decode(final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05)))
            video_path = self._save_and_log_video(pixel_tensor, "single_video", FPS, temp_dir, results_dir, used_seed)

        self.finalize(keep_paths=[video_path, tensor_path])
        return video_path, tensor_path, used_seed
        
    def generate_upscale_denoise(self, latents_path, prompt, negative_prompt, guidance_scale, seed):
            used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
            seed_everething(used_seed)
            temp_dir = tempfile.mkdtemp(prefix="ltxv_up_"); self._register_tmp_dir(temp_dir)
            results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
            latents_low = torch.load(latents_path).to(self.device)
            with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'):
                upsampled_latents = self._upsample_latents_internal(latents_low)
                upsampled_latents = adain_filter_latent(latents=upsampled_latents, reference_latents=latents_low)
                del latents_low; torch.cuda.empty_cache()
                
                # --- LÓGICA DE DIVISÃO SIMPLES COM OVERLAP ---
                total_frames = upsampled_latents.shape[2]
                # Garante que mid_point seja pelo menos 1 para evitar um segundo chunk vazio se houver poucos frames
                mid_point = max(1, total_frames // 2) 
                chunk1 = upsampled_latents[:, :, :mid_point, :, :]
                # O segundo chunk começa um frame antes para criar o overlap
                chunk2 = upsampled_latents[:, :, mid_point - 1:, :, :]
                
                final_latents_list = []
                for i, chunk in enumerate([chunk1, chunk2]):
                    if chunk.shape[2] <= 1: continue # Pula chunks inválidos ou vazios
                    second_pass_height = chunk.shape[3] * self.pipeline.vae_scale_factor
                    second_pass_width = chunk.shape[4] * self.pipeline.vae_scale_factor
                    second_pass_kwargs = {
                        "prompt": prompt, "negative_prompt": negative_prompt, "height": second_pass_height, "width": second_pass_width,
                        "num_frames": chunk.shape[2], "latents": chunk, "guidance_scale": float(guidance_scale),
                        "output_type": "latent", "generator": torch.Generator(device=self.device).manual_seed(used_seed),
                        **(self.config.get("second_pass", {}))
                    }
                    refined_chunk = self.pipeline(**second_pass_kwargs).images
                    # Remove o overlap do primeiro chunk refinado antes de juntar
                    if i == 0:
                        final_latents_list.append(refined_chunk[:, :, :-1, :, :])
                    else:
                        final_latents_list.append(refined_chunk)
    
            final_latents = torch.cat(final_latents_list, dim=2)
            log_tensor_info(final_latents, "Latentes Upscaled/Refinados Finais")
    
            latents_cpu = final_latents.detach().to("cpu")
            tensor_path = os.path.join(results_dir, f"latents_refined_{used_seed}.pt")
            torch.save(latents_cpu, tensor_path)
            pixel_tensor = vae_manager_singleton.decode(final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05)))
            video_path = self._save_and_log_video(pixel_tensor, "refined_video", 24.0, temp_dir, results_dir, used_seed)
            return video_path, tensor_path    

    def encode_mp4(self, latents_path: str, fps: int = 24):
        latents = torch.load(latents_path)
        seed = random.randint(0, 99999)
        temp_dir = tempfile.mkdtemp(prefix="ltxv_enc_"); self._register_tmp_dir(temp_dir)
        results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
        
        # --- LÓGICA DE DIVISÃO SIMPLES COM OVERLAP ---
        total_frames = latents.shape[2]
        mid_point = max(1, total_frames // 2)
        chunk1_latents = latents[:, :, :mid_point, :, :]
        chunk2_latents = latents[:, :, mid_point - 1:, :, :]
        
        video_parts = []
        pixel_chunks_to_concat = []
        with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device == 'cuda'):
            for i, chunk in enumerate([chunk1_latents, chunk2_latents]):
                if chunk.shape[2] == 0: continue
                pixel_chunk = vae_manager_singleton.decode(chunk.to(self.device), decode_timestep=float(self.config.get("decode_timestep", 0.05)))
                # Remove o overlap do primeiro chunk de pixels
                if i == 0:
                    pixel_chunks_to_concat.append(pixel_chunk[:, :, :-1, :, :])
                else:
                    pixel_chunks_to_concat.append(pixel_chunk)
        
        final_pixel_tensor = torch.cat(pixel_chunks_to_concat, dim=2)
        final_video_path = self._save_and_log_video(final_pixel_tensor, f"final_concatenated_{seed}", fps, temp_dir, results_dir, seed)
        return final_video_path
        

# --- INSTANCIAÇÃO DO SERVIÇO ---
print("Criando instância do VideoService...")
video_generation_service = VideoService()
print("Instância do VideoService pronta.")
self.device = gpu_manager.get_ltx_device()
        print(f"[DEBUG] LTX foi alocado para o dispositivo: {self.device}")