Update api/ltx_server_refactored.py
Browse files- api/ltx_server_refactored.py +208 -6
api/ltx_server_refactored.py
CHANGED
|
@@ -33,6 +33,7 @@ import shutil
|
|
| 33 |
import contextlib
|
| 34 |
import time
|
| 35 |
import traceback
|
|
|
|
| 36 |
from einops import rearrange
|
| 37 |
import torch.nn.functional as F
|
| 38 |
from managers.vae_manager import vae_manager_singleton
|
|
@@ -101,6 +102,9 @@ class VideoService:
|
|
| 101 |
def __init__(self):
|
| 102 |
t0 = time.perf_counter()
|
| 103 |
print("[DEBUG] Inicializando VideoService...")
|
|
|
|
|
|
|
|
|
|
| 104 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 105 |
self.config = self._load_config()
|
| 106 |
self.pipeline, self.latent_upsampler = self._load_models()
|
|
@@ -139,7 +143,21 @@ class VideoService:
|
|
| 139 |
self._log_gpu_memory("Após finalize")
|
| 140 |
except Exception as e:
|
| 141 |
print(f"[DEBUG] Log GPU pós-finalize falhou: {e}")
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
def _load_models(self):
|
| 144 |
t0 = time.perf_counter()
|
| 145 |
LTX_REPO = "Lightricks/LTX-Video"
|
|
@@ -245,7 +263,7 @@ class VideoService:
|
|
| 245 |
conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
|
| 246 |
return conditioning_items
|
| 247 |
|
| 248 |
-
def
|
| 249 |
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 250 |
seed_everething(used_seed)
|
| 251 |
FPS = 24.0
|
|
@@ -282,7 +300,191 @@ class VideoService:
|
|
| 282 |
torch.cuda.empty_cache()
|
| 283 |
torch.cuda.ipc_collect()
|
| 284 |
self.finalize(keep_paths=[])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 286 |
def generate_upscale_denoise(self, latents_path, prompt, negative_prompt, guidance_scale, seed):
|
| 287 |
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 288 |
seed_everething(used_seed)
|
|
@@ -330,8 +532,6 @@ class VideoService:
|
|
| 330 |
video_path = self._save_and_log_video(pixel_tensor, "refined_video", 24.0, temp_dir, results_dir, used_seed)
|
| 331 |
return video_path, tensor_path
|
| 332 |
|
| 333 |
-
|
| 334 |
-
|
| 335 |
def encode_mp4(self, latents_path: str, fps: int = 24):
|
| 336 |
latents = torch.load(latents_path)
|
| 337 |
seed = random.randint(0, 99999)
|
|
@@ -362,6 +562,8 @@ class VideoService:
|
|
| 362 |
|
| 363 |
|
| 364 |
# --- INSTANCIAÇÃO DO SERVIÇO ---
|
| 365 |
-
print("Criando instância do VideoService
|
| 366 |
video_generation_service = VideoService()
|
| 367 |
-
print("Instância do VideoService pronta
|
|
|
|
|
|
|
|
|
| 33 |
import contextlib
|
| 34 |
import time
|
| 35 |
import traceback
|
| 36 |
+
from api.gpu_manager import gpu_manager
|
| 37 |
from einops import rearrange
|
| 38 |
import torch.nn.functional as F
|
| 39 |
from managers.vae_manager import vae_manager_singleton
|
|
|
|
| 102 |
def __init__(self):
|
| 103 |
t0 = time.perf_counter()
|
| 104 |
print("[DEBUG] Inicializando VideoService...")
|
| 105 |
+
self.device = gpu_manager.get_ltx_device()
|
| 106 |
+
print(f"[DEBUG] LTX foi alocado para o dispositivo: {self.device}")
|
| 107 |
+
|
| 108 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 109 |
self.config = self._load_config()
|
| 110 |
self.pipeline, self.latent_upsampler = self._load_models()
|
|
|
|
| 143 |
self._log_gpu_memory("Após finalize")
|
| 144 |
except Exception as e:
|
| 145 |
print(f"[DEBUG] Log GPU pós-finalize falhou: {e}")
|
| 146 |
+
|
| 147 |
+
def move_to_device(self, device):
|
| 148 |
+
"""Move os modelos do pipeline para o dispositivo especificado."""
|
| 149 |
+
print(f"[LTX] Movendo modelos para {device}...")
|
| 150 |
+
self.pipeline.to(device)
|
| 151 |
+
if self.latent_upsampler:
|
| 152 |
+
self.latent_upsampler.to(device)
|
| 153 |
+
self.device = device
|
| 154 |
+
|
| 155 |
+
def move_to_cpu(self):
|
| 156 |
+
"""Move os modelos para a CPU para liberar VRAM."""
|
| 157 |
+
self.move_to_device(torch.device("cpu"))
|
| 158 |
+
if torch.cuda.is_available():
|
| 159 |
+
torch.cuda.empty_cache()
|
| 160 |
+
|
| 161 |
def _load_models(self):
|
| 162 |
t0 = time.perf_counter()
|
| 163 |
LTX_REPO = "Lightricks/LTX-Video"
|
|
|
|
| 263 |
conditioning_items.append(ConditioningItem(tensor, safe_frame, float(weight)))
|
| 264 |
return conditioning_items
|
| 265 |
|
| 266 |
+
def generate_low_old(self, prompt, negative_prompt, height, width, duration, guidance_scale, seed, conditioning_items=None):
|
| 267 |
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 268 |
seed_everething(used_seed)
|
| 269 |
FPS = 24.0
|
|
|
|
| 300 |
torch.cuda.empty_cache()
|
| 301 |
torch.cuda.ipc_collect()
|
| 302 |
self.finalize(keep_paths=[])
|
| 303 |
+
|
| 304 |
+
def _generate_single_chunk_low(self, prompt, negative_prompt, height, width, num_frames, guidance_scale, seed, initial_latent_condition=None, image_conditions=None, ltx_configs_override=None):
|
| 305 |
+
"""
|
| 306 |
+
[NÓ DE GERAÇÃO]
|
| 307 |
+
Gera um ÚNICO chunk de latentes brutos. Esta é a unidade de trabalho fundamental.
|
| 308 |
+
"""
|
| 309 |
+
# (Esta função auxiliar permanece a mesma da nossa última versão, com a lógica de override)
|
| 310 |
+
print("\n" + "-"*20 + " INÍCIO: _generate_single_chunk_low " + "-"*20)
|
| 311 |
+
height_padded = ((height - 1) // 8 + 1) * 8
|
| 312 |
+
width_padded = ((width - 1) // 8 + 1) * 8
|
| 313 |
+
generator = torch.Generator(device=self.device).manual_seed(seed)
|
| 314 |
+
|
| 315 |
+
downscale_factor = self.config.get("downscale_factor", 0.6666666)
|
| 316 |
+
vae_scale_factor = self.pipeline.vae_scale_factor
|
| 317 |
+
|
| 318 |
+
x_width = int(width_padded * downscale_factor)
|
| 319 |
+
downscaled_width = x_width - (x_width % vae_scale_factor)
|
| 320 |
+
x_height = int(height_padded * downscale_factor)
|
| 321 |
+
downscaled_height = x_height - (x_height % vae_scale_factor)
|
| 322 |
+
|
| 323 |
+
all_conditions = []
|
| 324 |
+
if image_conditions: all_conditions.extend(image_conditions)
|
| 325 |
+
if initial_latent_condition: all_conditions.append(initial_latent_condition)
|
| 326 |
+
|
| 327 |
+
first_pass_config = self.config.get("first_pass", {}).copy()
|
| 328 |
+
|
| 329 |
+
if ltx_configs_override:
|
| 330 |
+
print("[DEBUG] Sobrepondo configurações do LTX com valores da UI...")
|
| 331 |
+
if "first_pass_num_inference_steps" in ltx_configs_override:
|
| 332 |
+
first_pass_config["num_inference_steps"] = ltx_configs_override["first_pass_num_inference_steps"]
|
| 333 |
+
if "first_pass_guidance_scale" in ltx_configs_override:
|
| 334 |
+
max_val = max(first_pass_config.get("guidance_scale", [1]))
|
| 335 |
+
new_max_val = ltx_configs_override["first_pass_guidance_scale"]
|
| 336 |
+
first_pass_config["guidance_scale"] = [new_max_val if x==max_val else x for x in first_pass_config["guidance_scale"]]
|
| 337 |
+
|
| 338 |
+
first_pass_kwargs = {
|
| 339 |
+
"prompt": prompt, "negative_prompt": negative_prompt, "height": downscaled_height, "width": downscaled_width,
|
| 340 |
+
"num_frames": num_frames, "frame_rate": 24, "generator": generator, "output_type": "latent",
|
| 341 |
+
"conditioning_items": all_conditions if all_conditions else None,
|
| 342 |
+
**first_pass_config
|
| 343 |
+
}
|
| 344 |
+
# Removido guidance_scale daqui pois agora está dentro do first_pass_config
|
| 345 |
+
if "guidance_scale" in first_pass_kwargs:
|
| 346 |
+
del first_pass_kwargs['guidance_scale']
|
| 347 |
+
|
| 348 |
+
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
|
| 349 |
+
latents_bruto = self.pipeline(**first_pass_kwargs).images
|
| 350 |
+
log_tensor_info(latents_bruto, f"Latente Bruto Gerado para: '{prompt[:40]}...'")
|
| 351 |
+
|
| 352 |
+
print("-" * 20 + " FIM: _generate_single_chunk_low " + "-"*20)
|
| 353 |
+
return latents_bruto
|
| 354 |
+
|
| 355 |
+
def generate_narrative_low(self, prompt: str, negative_prompt, height, width, duration, guidance_scale, seed, initial_image_conditions=None, overlap_frames: int = 8, ltx_configs_override: dict = None):
|
| 356 |
+
"""
|
| 357 |
+
[ORQUESTRADOR NARRATIVO]
|
| 358 |
+
Gera um vídeo em múltiplos chunks sequenciais a partir de um prompt com várias linhas.
|
| 359 |
+
"""
|
| 360 |
+
print("\n" + "="*80)
|
| 361 |
+
print("====== INICIANDO GERAÇÃO NARRATIVA EM CHUNKS (LOW-RES) ======")
|
| 362 |
+
print("="*80)
|
| 363 |
+
|
| 364 |
+
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 365 |
+
seed_everething(used_seed)
|
| 366 |
+
FPS = 24.0
|
| 367 |
+
|
| 368 |
+
prompt_list = [p.strip() for p in prompt.splitlines() if p.strip()]
|
| 369 |
+
num_chunks = len(prompt_list)
|
| 370 |
+
if num_chunks == 0: raise ValueError("O prompt está vazio ou não contém linhas válidas.")
|
| 371 |
+
|
| 372 |
+
total_actual_frames = max(9, int(round((round(duration * FPS) - 1) / 8.0) * 8 + 1))
|
| 373 |
+
|
| 374 |
+
if num_chunks > 1:
|
| 375 |
+
total_blocks = (total_actual_frames - 1) // 8
|
| 376 |
+
blocks_per_chunk = total_blocks // num_chunks
|
| 377 |
+
blocks_last_chunk = total_blocks - (blocks_per_chunk * (num_chunks - 1))
|
| 378 |
+
frames_per_chunk = blocks_per_chunk * 8 + 1
|
| 379 |
+
frames_per_chunk_last = blocks_last_chunk * 8 + 1
|
| 380 |
+
else:
|
| 381 |
+
frames_per_chunk = total_actual_frames
|
| 382 |
+
frames_per_chunk_last = total_actual_frames
|
| 383 |
+
|
| 384 |
+
frames_per_chunk = max(9, frames_per_chunk)
|
| 385 |
+
frames_per_chunk_last = max(9, frames_per_chunk_last)
|
| 386 |
+
|
| 387 |
+
poda_latents_num = overlap_frames // self.pipeline.video_scale_factor if self.pipeline.video_scale_factor > 0 else 0
|
| 388 |
+
|
| 389 |
+
latentes_chunk_video = []
|
| 390 |
+
condition_item_latent_overlap = None
|
| 391 |
+
temp_dir = tempfile.mkdtemp(prefix="ltxv_narrative_"); self._register_tmp_dir(temp_dir)
|
| 392 |
+
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
|
| 393 |
+
|
| 394 |
+
for i, chunk_prompt in enumerate(prompt_list):
|
| 395 |
+
print(f"\n--- Gerando Chunk Narrativo {i+1}/{num_chunks}: '{chunk_prompt}' ---")
|
| 396 |
+
|
| 397 |
+
current_image_conditions = []
|
| 398 |
+
if initial_image_conditions:
|
| 399 |
+
cond_item_original = initial_image_conditions[0]
|
| 400 |
+
if i == 0:
|
| 401 |
+
current_image_conditions.append(cond_item_original)
|
| 402 |
+
else:
|
| 403 |
+
cond_item_fraco = ConditioningItem(
|
| 404 |
+
media_item=cond_item_original.media_item, media_frame_number=0, conditioning_strength=0.1
|
| 405 |
+
)
|
| 406 |
+
current_image_conditions.append(cond_item_fraco)
|
| 407 |
+
|
| 408 |
+
num_frames_para_gerar = frames_per_chunk_last if i == num_chunks - 1 else frames_per_chunk
|
| 409 |
+
if i > 0 and poda_latents_num > 0:
|
| 410 |
+
num_frames_para_gerar += overlap_frames
|
| 411 |
|
| 412 |
+
latentes_bruto = self._generate_single_chunk_low(
|
| 413 |
+
prompt=chunk_prompt, negative_prompt=negative_prompt, height=height, width=width,
|
| 414 |
+
num_frames=num_frames_para_gerar, guidance_scale=guidance_scale, seed=used_seed + i,
|
| 415 |
+
initial_latent_condition=condition_item_latent_overlap, image_conditions=current_image_conditions,
|
| 416 |
+
ltx_configs_override=ltx_configs_override
|
| 417 |
+
)
|
| 418 |
+
|
| 419 |
+
if i > 0 and poda_latents_num > 0:
|
| 420 |
+
latentes_bruto = latentes_bruto[:, :, poda_latents_num:, :, :]
|
| 421 |
+
|
| 422 |
+
latentes_podado = latentes_bruto.clone().detach()
|
| 423 |
+
if i < num_chunks - 1 and poda_latents_num > 0:
|
| 424 |
+
latentes_podado = latentes_bruto[:, :, :-poda_latents_num, :, :].clone()
|
| 425 |
+
overlap_latents = latentes_bruto[:, :, -poda_latents_num:, :, :].clone()
|
| 426 |
+
condition_item_latent_overlap = ConditioningItem(
|
| 427 |
+
media_item=overlap_latents, media_frame_number=0, conditioning_strength=1.0
|
| 428 |
+
)
|
| 429 |
+
latentes_chunk_video.append(latentes_podado)
|
| 430 |
+
|
| 431 |
+
print("\n--- Finalizando Narrativa: Concatenando chunks ---")
|
| 432 |
+
final_latents = torch.cat(latentes_chunk_video, dim=2)
|
| 433 |
+
log_tensor_info(final_latents, "Tensor de Latentes Final Concatenado")
|
| 434 |
+
|
| 435 |
+
tensor_path = os.path.join(results_dir, f"latents_narrative_{used_seed}.pt")
|
| 436 |
+
torch.save(final_latents.cpu(), tensor_path)
|
| 437 |
+
|
| 438 |
+
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
|
| 439 |
+
pixel_tensor = vae_manager_singleton.decode(final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 440 |
+
video_path = self._save_and_log_video(pixel_tensor, "narrative_video", FPS, temp_dir, results_dir, used_seed)
|
| 441 |
+
|
| 442 |
+
self.finalize(keep_paths=[video_path, tensor_path])
|
| 443 |
+
return video_path, tensor_path, used_seed
|
| 444 |
+
|
| 445 |
+
def generate_single_low(self, prompt: str, negative_prompt, height, width, duration, guidance_scale, seed, initial_image_conditions=None, ltx_configs_override: dict = None):
|
| 446 |
+
"""
|
| 447 |
+
[ORQUESTRADOR SIMPLES]
|
| 448 |
+
Gera um vídeo completo em um único chunk. Ideal para prompts simples e curtos.
|
| 449 |
+
"""
|
| 450 |
+
print("\n" + "="*80)
|
| 451 |
+
print("====== INICIANDO GERAÇÃO SIMPLES EM CHUNK ÚNICO (LOW-RES) ======")
|
| 452 |
+
print("="*80)
|
| 453 |
+
|
| 454 |
+
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 455 |
+
seed_everething(used_seed)
|
| 456 |
+
FPS = 24.0
|
| 457 |
+
|
| 458 |
+
total_actual_frames = max(9, int(round((round(duration * FPS) - 1) / 8.0) * 8 + 1))
|
| 459 |
+
|
| 460 |
+
temp_dir = tempfile.mkdtemp(prefix="ltxv_single_"); self._register_tmp_dir(temp_dir)
|
| 461 |
+
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
|
| 462 |
+
|
| 463 |
+
# Chama a função de geração de chunk único para fazer todo o trabalho
|
| 464 |
+
final_latents = self._generate_single_chunk_low(
|
| 465 |
+
prompt=prompt,
|
| 466 |
+
negative_prompt=negative_prompt,
|
| 467 |
+
height=height, width=width,
|
| 468 |
+
num_frames=total_actual_frames,
|
| 469 |
+
guidance_scale=guidance_scale,
|
| 470 |
+
seed=used_seed,
|
| 471 |
+
image_conditions=initial_image_conditions,
|
| 472 |
+
ltx_configs_override=ltx_configs_override
|
| 473 |
+
)
|
| 474 |
+
|
| 475 |
+
print("\n--- Finalizando Geração Simples: Salvando e decodificando ---")
|
| 476 |
+
log_tensor_info(final_latents, "Tensor de Latentes Final")
|
| 477 |
+
|
| 478 |
+
tensor_path = os.path.join(results_dir, f"latents_single_{used_seed}.pt")
|
| 479 |
+
torch.save(final_latents.cpu(), tensor_path)
|
| 480 |
+
|
| 481 |
+
with torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype, enabled=self.device.type == 'cuda'):
|
| 482 |
+
pixel_tensor = vae_manager_singleton.decode(final_latents, decode_timestep=float(self.config.get("decode_timestep", 0.05)))
|
| 483 |
+
video_path = self._save_and_log_video(pixel_tensor, "single_video", FPS, temp_dir, results_dir, used_seed)
|
| 484 |
+
|
| 485 |
+
self.finalize(keep_paths=[video_path, tensor_path])
|
| 486 |
+
return video_path, tensor_path, used_seed
|
| 487 |
+
|
| 488 |
def generate_upscale_denoise(self, latents_path, prompt, negative_prompt, guidance_scale, seed):
|
| 489 |
used_seed = random.randint(0, 2**32 - 1) if seed is None else int(seed)
|
| 490 |
seed_everething(used_seed)
|
|
|
|
| 532 |
video_path = self._save_and_log_video(pixel_tensor, "refined_video", 24.0, temp_dir, results_dir, used_seed)
|
| 533 |
return video_path, tensor_path
|
| 534 |
|
|
|
|
|
|
|
| 535 |
def encode_mp4(self, latents_path: str, fps: int = 24):
|
| 536 |
latents = torch.load(latents_path)
|
| 537 |
seed = random.randint(0, 99999)
|
|
|
|
| 562 |
|
| 563 |
|
| 564 |
# --- INSTANCIAÇÃO DO SERVIÇO ---
|
| 565 |
+
print("Criando instância do VideoService...")
|
| 566 |
video_generation_service = VideoService()
|
| 567 |
+
print("Instância do VideoService pronta.")
|
| 568 |
+
self.device = gpu_manager.get_ltx_device()
|
| 569 |
+
print(f"[DEBUG] LTX foi alocado para o dispositivo: {self.device}")
|