Upload ltx_server (8).py
Browse files- api/ltx_server (8).py +840 -0
api/ltx_server (8).py
ADDED
|
@@ -0,0 +1,840 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ltx_server.py — VideoService (beta 1.1)
|
| 2 |
+
# Sempre output_type="latent"; no final: VAE (bloco inteiro) → pixels → MP4.
|
| 3 |
+
# Ignora UserWarning/FutureWarning e injeta VAE no manager com dtype/device corretos.
|
| 4 |
+
|
| 5 |
+
# --- 0. WARNINGS E AMBIENTE ---
|
| 6 |
+
import warnings
|
| 7 |
+
warnings.filterwarnings("ignore", category=UserWarning)
|
| 8 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
| 9 |
+
warnings.filterwarnings("ignore", message=".*")
|
| 10 |
+
|
| 11 |
+
from huggingface_hub import logging
|
| 12 |
+
|
| 13 |
+
logging.set_verbosity_error()
|
| 14 |
+
logging.set_verbosity_warning()
|
| 15 |
+
logging.set_verbosity_info()
|
| 16 |
+
logging.set_verbosity_debug()
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
LTXV_DEBUG=1
|
| 20 |
+
LTXV_FRAME_LOG_EVERY=8
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
# --- 1. IMPORTAÇÕES ---
|
| 25 |
+
import os, subprocess, shlex, tempfile
|
| 26 |
+
import torch
|
| 27 |
+
import json
|
| 28 |
+
import numpy as np
|
| 29 |
+
import random
|
| 30 |
+
import os
|
| 31 |
+
import shlex
|
| 32 |
+
import yaml
|
| 33 |
+
from typing import List, Dict
|
| 34 |
+
from pathlib import Path
|
| 35 |
+
import imageio
|
| 36 |
+
import tempfile
|
| 37 |
+
from huggingface_hub import hf_hub_download
|
| 38 |
+
import sys
|
| 39 |
+
import subprocess
|
| 40 |
+
import gc
|
| 41 |
+
import shutil
|
| 42 |
+
import contextlib
|
| 43 |
+
import time
|
| 44 |
+
import traceback
|
| 45 |
+
|
| 46 |
+
# Singletons (versões simples)
|
| 47 |
+
from managers.vae_manager import vae_manager_singleton
|
| 48 |
+
from tools.video_encode_tool import video_encode_tool_singleton
|
| 49 |
+
|
| 50 |
+
# --- 2. GERENCIAMENTO DE DEPENDÊNCIAS E SETUP ---
|
| 51 |
+
def _query_gpu_processes_via_nvml(device_index: int) -> List[Dict]:
|
| 52 |
+
try:
|
| 53 |
+
import psutil
|
| 54 |
+
import pynvml as nvml
|
| 55 |
+
nvml.nvmlInit()
|
| 56 |
+
handle = nvml.nvmlDeviceGetHandleByIndex(device_index)
|
| 57 |
+
try:
|
| 58 |
+
procs = nvml.nvmlDeviceGetComputeRunningProcesses_v3(handle)
|
| 59 |
+
except Exception:
|
| 60 |
+
procs = nvml.nvmlDeviceGetComputeRunningProcesses(handle)
|
| 61 |
+
results = []
|
| 62 |
+
for p in procs:
|
| 63 |
+
pid = int(p.pid)
|
| 64 |
+
used_mb = None
|
| 65 |
+
try:
|
| 66 |
+
if getattr(p, "usedGpuMemory", None) is not None and p.usedGpuMemory not in (0,):
|
| 67 |
+
used_mb = max(0, int(p.usedGpuMemory) // (1024 * 1024))
|
| 68 |
+
except Exception:
|
| 69 |
+
used_mb = None
|
| 70 |
+
name = "unknown"
|
| 71 |
+
user = "unknown"
|
| 72 |
+
try:
|
| 73 |
+
import psutil
|
| 74 |
+
pr = psutil.Process(pid)
|
| 75 |
+
name = pr.name()
|
| 76 |
+
user = pr.username()
|
| 77 |
+
except Exception:
|
| 78 |
+
pass
|
| 79 |
+
results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
|
| 80 |
+
nvml.nvmlShutdown()
|
| 81 |
+
return results
|
| 82 |
+
except Exception:
|
| 83 |
+
return []
|
| 84 |
+
|
| 85 |
+
def _query_gpu_processes_via_nvidiasmi(device_index: int) -> List[Dict]:
|
| 86 |
+
cmd = f"nvidia-smi -i {device_index} --query-compute-apps=pid,process_name,used_memory --format=csv,noheader,nounits"
|
| 87 |
+
try:
|
| 88 |
+
out = subprocess.check_output(shlex.split(cmd), stderr=subprocess.STDOUT, text=True, timeout=2.0)
|
| 89 |
+
except Exception:
|
| 90 |
+
return []
|
| 91 |
+
results = []
|
| 92 |
+
for line in out.strip().splitlines():
|
| 93 |
+
parts = [p.strip() for p in line.split(",")]
|
| 94 |
+
if len(parts) >= 3:
|
| 95 |
+
try:
|
| 96 |
+
pid = int(parts[0]); name = parts[1]; used_mb = int(parts[2])
|
| 97 |
+
user = "unknown"
|
| 98 |
+
try:
|
| 99 |
+
import psutil
|
| 100 |
+
pr = psutil.Process(pid)
|
| 101 |
+
user = pr.username()
|
| 102 |
+
except Exception:
|
| 103 |
+
pass
|
| 104 |
+
results.append({"pid": pid, "name": name, "user": user, "used_mb": used_mb})
|
| 105 |
+
except Exception:
|
| 106 |
+
continue
|
| 107 |
+
return results
|
| 108 |
+
|
| 109 |
+
def _gpu_process_table(processes: List[Dict], current_pid: int) -> str:
|
| 110 |
+
if not processes:
|
| 111 |
+
return " - Processos ativos: (nenhum)\n"
|
| 112 |
+
processes = sorted(processes, key=lambda x: (x.get("used_mb") or 0), reverse=True)
|
| 113 |
+
lines = [" - Processos ativos (PID | USER | NAME | VRAM MB):"]
|
| 114 |
+
for p in processes:
|
| 115 |
+
star = "*" if p["pid"] == current_pid else " "
|
| 116 |
+
used_str = str(p["used_mb"]) if p.get("used_mb") is not None else "N/A"
|
| 117 |
+
lines.append(f" {star} {p['pid']} | {p['user']} | {p['name']} | {used_str}")
|
| 118 |
+
return "\n".join(lines) + "\n"
|
| 119 |
+
|
| 120 |
+
def run_setup():
|
| 121 |
+
setup_script_path = "setup.py"
|
| 122 |
+
if not os.path.exists(setup_script_path):
|
| 123 |
+
print("[DEBUG] 'setup.py' não encontrado. Pulando clonagem de dependências.")
|
| 124 |
+
return
|
| 125 |
+
try:
|
| 126 |
+
print("[DEBUG] Executando setup.py para dependências...")
|
| 127 |
+
subprocess.run([sys.executable, setup_script_path], check=True)
|
| 128 |
+
print("[DEBUG] Setup concluído com sucesso.")
|
| 129 |
+
except subprocess.CalledProcessError as e:
|
| 130 |
+
print(f"[DEBUG] ERRO no setup.py (code {e.returncode}). Abortando.")
|
| 131 |
+
sys.exit(1)
|
| 132 |
+
|
| 133 |
+
from api.ltx.inference import (
|
| 134 |
+
create_ltx_video_pipeline,
|
| 135 |
+
create_latent_upsampler,
|
| 136 |
+
load_image_to_tensor_with_resize_and_crop,
|
| 137 |
+
seed_everething,
|
| 138 |
+
calculate_padding,
|
| 139 |
+
load_media_file,
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
DEPS_DIR = Path("/data")
|
| 143 |
+
LTX_VIDEO_REPO_DIR = DEPS_DIR / "LTX-Video"
|
| 144 |
+
if not LTX_VIDEO_REPO_DIR.exists():
|
| 145 |
+
print(f"[DEBUG] Repositório não encontrado em {LTX_VIDEO_REPO_DIR}. Rodando setup...")
|
| 146 |
+
run_setup()
|
| 147 |
+
|
| 148 |
+
def add_deps_to_path():
|
| 149 |
+
repo_path = str(LTX_VIDEO_REPO_DIR.resolve())
|
| 150 |
+
if str(LTX_VIDEO_REPO_DIR.resolve()) not in sys.path:
|
| 151 |
+
sys.path.insert(0, repo_path)
|
| 152 |
+
print(f"[DEBUG] Repo adicionado ao sys.path: {repo_path}")
|
| 153 |
+
|
| 154 |
+
add_deps_to_path()
|
| 155 |
+
|
| 156 |
+
# --- 3. IMPORTAÇÕES ESPECÍFICAS DO MODELO ---
|
| 157 |
+
|
| 158 |
+
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline
|
| 159 |
+
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
|
| 160 |
+
|
| 161 |
+
# --- 4. FUNÇÕES HELPER DE LOG ---
|
| 162 |
+
def log_tensor_info(tensor, name="Tensor"):
|
| 163 |
+
if not isinstance(tensor, torch.Tensor):
|
| 164 |
+
print(f"\n[INFO] '{name}' não é tensor.")
|
| 165 |
+
return
|
| 166 |
+
print(f"\n--- Tensor: {name} ---")
|
| 167 |
+
print(f" - Shape: {tuple(tensor.shape)}")
|
| 168 |
+
print(f" - Dtype: {tensor.dtype}")
|
| 169 |
+
print(f" - Device: {tensor.device}")
|
| 170 |
+
if tensor.numel() > 0:
|
| 171 |
+
try:
|
| 172 |
+
print(f" - Min: {tensor.min().item():.4f} Max: {tensor.max().item():.4f} Mean: {tensor.mean().item():.4f}")
|
| 173 |
+
except Exception:
|
| 174 |
+
pass
|
| 175 |
+
print("------------------------------------------\n")
|
| 176 |
+
|
| 177 |
+
# --- 5. CLASSE PRINCIPAL DO SERVIÇO ---
|
| 178 |
+
class VideoService:
|
| 179 |
+
def __init__(self):
|
| 180 |
+
t0 = time.perf_counter()
|
| 181 |
+
print("[DEBUG] Inicializando VideoService...")
|
| 182 |
+
self.debug = os.getenv("LTXV_DEBUG", "1") == "1"
|
| 183 |
+
self.frame_log_every = int(os.getenv("LTXV_FRAME_LOG_EVERY", "8"))
|
| 184 |
+
self.config = self._load_config()
|
| 185 |
+
print(f"[DEBUG] Config carregada (precision={self.config.get('precision')}, sampler={self.config.get('sampler')})")
|
| 186 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 187 |
+
print(f"[DEBUG] Device selecionado: {self.device}")
|
| 188 |
+
self.last_memory_reserved_mb = 0.0
|
| 189 |
+
self._tmp_dirs = set(); self._tmp_files = set(); self._last_outputs = []
|
| 190 |
+
|
| 191 |
+
self.pipeline, self.latent_upsampler = self._load_models()
|
| 192 |
+
print(f"[DEBUG] Pipeline e Upsampler carregados. Upsampler ativo? {bool(self.latent_upsampler)}")
|
| 193 |
+
|
| 194 |
+
print(f"[DEBUG] Movendo modelos para {self.device}...")
|
| 195 |
+
self.pipeline.to(self.device)
|
| 196 |
+
if self.latent_upsampler:
|
| 197 |
+
self.latent_upsampler.to(self.device)
|
| 198 |
+
|
| 199 |
+
self._apply_precision_policy()
|
| 200 |
+
print(f"[DEBUG] runtime_autocast_dtype = {getattr(self, 'runtime_autocast_dtype', None)}")
|
| 201 |
+
|
| 202 |
+
# Injeta pipeline/vae no manager (impede vae=None)
|
| 203 |
+
vae_manager_singleton.attach_pipeline(
|
| 204 |
+
self.pipeline,
|
| 205 |
+
device=self.device,
|
| 206 |
+
autocast_dtype=self.runtime_autocast_dtype
|
| 207 |
+
)
|
| 208 |
+
print(f"[DEBUG] VAE manager conectado: has_vae={hasattr(self.pipeline, 'vae')} device={self.device}")
|
| 209 |
+
|
| 210 |
+
if self.device == "cuda":
|
| 211 |
+
torch.cuda.empty_cache()
|
| 212 |
+
self._log_gpu_memory("Após carregar modelos")
|
| 213 |
+
|
| 214 |
+
print(f"[DEBUG] VideoService pronto. boot_time={time.perf_counter()-t0:.3f}s")
|
| 215 |
+
|
| 216 |
+
def _log_gpu_memory(self, stage_name: str):
|
| 217 |
+
if self.device != "cuda":
|
| 218 |
+
return
|
| 219 |
+
device_index = torch.cuda.current_device() if torch.cuda.is_available() else 0
|
| 220 |
+
current_reserved_b = torch.cuda.memory_reserved(device_index)
|
| 221 |
+
current_reserved_mb = current_reserved_b / (1024 ** 2)
|
| 222 |
+
total_memory_b = torch.cuda.get_device_properties(device_index).total_memory
|
| 223 |
+
total_memory_mb = total_memory_b / (1024 ** 2)
|
| 224 |
+
peak_reserved_mb = torch.cuda.max_memory_reserved(device_index) / (1024 ** 2)
|
| 225 |
+
delta_mb = current_reserved_mb - getattr(self, "last_memory_reserved_mb", 0.0)
|
| 226 |
+
processes = _query_gpu_processes_via_nvml(device_index) or _query_gpu_processes_via_nvidiasmi(device_index)
|
| 227 |
+
print(f"\n--- [LOG GPU] {stage_name} (cuda:{device_index}) ---")
|
| 228 |
+
print(f" - Reservado: {current_reserved_mb:.2f} MB / {total_memory_mb:.2f} MB (Δ={delta_mb:+.2f} MB)")
|
| 229 |
+
if peak_reserved_mb > getattr(self, "last_memory_reserved_mb", 0.0):
|
| 230 |
+
print(f" - Pico reservado (nesta fase): {peak_reserved_mb:.2f} MB")
|
| 231 |
+
print(_gpu_process_table(processes, os.getpid()), end="")
|
| 232 |
+
print("--------------------------------------------------\n")
|
| 233 |
+
self.last_memory_reserved_mb = current_reserved_mb
|
| 234 |
+
|
| 235 |
+
def _register_tmp_dir(self, d: str):
|
| 236 |
+
if d and os.path.isdir(d):
|
| 237 |
+
self._tmp_dirs.add(d); print(f"[DEBUG] Registrado tmp dir: {d}")
|
| 238 |
+
|
| 239 |
+
def _register_tmp_file(self, f: str):
|
| 240 |
+
if f and os.path.exists(f):
|
| 241 |
+
self._tmp_files.add(f); print(f"[DEBUG] Registrado tmp file: {f}")
|
| 242 |
+
|
| 243 |
+
def finalize(self, keep_paths=None, extra_paths=None, clear_gpu=True):
|
| 244 |
+
print("[DEBUG] Finalize: iniciando limpeza...")
|
| 245 |
+
keep = set(keep_paths or []); extras = set(extra_paths or [])
|
| 246 |
+
removed_files = 0
|
| 247 |
+
for f in list(self._tmp_files | extras):
|
| 248 |
+
try:
|
| 249 |
+
if f not in keep and os.path.isfile(f):
|
| 250 |
+
os.remove(f); removed_files += 1; print(f"[DEBUG] Removido arquivo tmp: {f}")
|
| 251 |
+
except Exception as e:
|
| 252 |
+
print(f"[DEBUG] Falha removendo arquivo {f}: {e}")
|
| 253 |
+
finally:
|
| 254 |
+
self._tmp_files.discard(f)
|
| 255 |
+
removed_dirs = 0
|
| 256 |
+
for d in list(self._tmp_dirs):
|
| 257 |
+
try:
|
| 258 |
+
if d not in keep and os.path.isdir(d):
|
| 259 |
+
shutil.rmtree(d, ignore_errors=True); removed_dirs += 1; print(f"[DEBUG] Removido diretório tmp: {d}")
|
| 260 |
+
except Exception as e:
|
| 261 |
+
print(f"[DEBUG] Falha removendo diretório {d}: {e}")
|
| 262 |
+
finally:
|
| 263 |
+
self._tmp_dirs.discard(d)
|
| 264 |
+
print(f"[DEBUG] Finalize: arquivos removidos={removed_files}, dirs removidos={removed_dirs}")
|
| 265 |
+
gc.collect()
|
| 266 |
+
try:
|
| 267 |
+
if clear_gpu and torch.cuda.is_available():
|
| 268 |
+
torch.cuda.empty_cache()
|
| 269 |
+
try:
|
| 270 |
+
torch.cuda.ipc_collect()
|
| 271 |
+
except Exception:
|
| 272 |
+
pass
|
| 273 |
+
except Exception as e:
|
| 274 |
+
print(f"[DEBUG] Finalize: limpeza GPU falhou: {e}")
|
| 275 |
+
try:
|
| 276 |
+
self._log_gpu_memory("Após finalize")
|
| 277 |
+
except Exception as e:
|
| 278 |
+
print(f"[DEBUG] Log GPU pós-finalize falhou: {e}")
|
| 279 |
+
|
| 280 |
+
def _load_config(self):
|
| 281 |
+
base = LTX_VIDEO_REPO_DIR / "configs"
|
| 282 |
+
candidates = [
|
| 283 |
+
base / "ltxv-13b-0.9.8-dev-fp8.yaml",
|
| 284 |
+
base / "ltxv-13b-0.9.8-distilled-fp8.yaml",
|
| 285 |
+
base / "ltxv-13b-0.9.8-distilled.yaml",
|
| 286 |
+
]
|
| 287 |
+
for cfg in candidates:
|
| 288 |
+
if cfg.exists():
|
| 289 |
+
print(f"[DEBUG] Config selecionada: {cfg}")
|
| 290 |
+
with open(cfg, "r") as file:
|
| 291 |
+
return yaml.safe_load(file)
|
| 292 |
+
cfg = base / "ltxv-13b-0.9.8-distilled-fp8.yaml"
|
| 293 |
+
print(f"[DEBUG] Config fallback: {cfg}")
|
| 294 |
+
with open(cfg, "r") as file:
|
| 295 |
+
return yaml.safe_load(file)
|
| 296 |
+
|
| 297 |
+
def _load_models(self):
|
| 298 |
+
t0 = time.perf_counter()
|
| 299 |
+
LTX_REPO = "Lightricks/LTX-Video"
|
| 300 |
+
print("[DEBUG] Baixando checkpoint principal...")
|
| 301 |
+
distilled_model_path = hf_hub_download(
|
| 302 |
+
repo_id=LTX_REPO,
|
| 303 |
+
filename=self.config["checkpoint_path"],
|
| 304 |
+
local_dir=os.getenv("HF_HOME"),
|
| 305 |
+
cache_dir=os.getenv("HF_HOME_CACHE"),
|
| 306 |
+
token=os.getenv("HF_TOKEN"),
|
| 307 |
+
)
|
| 308 |
+
self.config["checkpoint_path"] = distilled_model_path
|
| 309 |
+
print(f"[DEBUG] Checkpoint em: {distilled_model_path}")
|
| 310 |
+
|
| 311 |
+
print("[DEBUG] Baixando upscaler espacial...")
|
| 312 |
+
spatial_upscaler_path = hf_hub_download(
|
| 313 |
+
repo_id=LTX_REPO,
|
| 314 |
+
filename=self.config["spatial_upscaler_model_path"],
|
| 315 |
+
local_dir=os.getenv("HF_HOME"),
|
| 316 |
+
cache_dir=os.getenv("HF_HOME_CACHE"),
|
| 317 |
+
token=os.getenv("HF_TOKEN")
|
| 318 |
+
)
|
| 319 |
+
self.config["spatial_upscaler_model_path"] = spatial_upscaler_path
|
| 320 |
+
print(f"[DEBUG] Upscaler em: {spatial_upscaler_path}")
|
| 321 |
+
|
| 322 |
+
print("[DEBUG] Construindo pipeline...")
|
| 323 |
+
pipeline = create_ltx_video_pipeline(
|
| 324 |
+
ckpt_path=self.config["checkpoint_path"],
|
| 325 |
+
precision=self.config["precision"],
|
| 326 |
+
text_encoder_model_name_or_path=self.config["text_encoder_model_name_or_path"],
|
| 327 |
+
sampler=self.config["sampler"],
|
| 328 |
+
device="cpu",
|
| 329 |
+
enhance_prompt=False,
|
| 330 |
+
prompt_enhancer_image_caption_model_name_or_path=self.config["prompt_enhancer_image_caption_model_name_or_path"],
|
| 331 |
+
prompt_enhancer_llm_model_name_or_path=self.config["prompt_enhancer_llm_model_name_or_path"],
|
| 332 |
+
)
|
| 333 |
+
print("[DEBUG] Pipeline pronto.")
|
| 334 |
+
|
| 335 |
+
latent_upsampler = None
|
| 336 |
+
if self.config.get("spatial_upscaler_model_path"):
|
| 337 |
+
print("[DEBUG] Construindo latent_upsampler...")
|
| 338 |
+
latent_upsampler = create_latent_upsampler(self.config["spatial_upscaler_model_path"], device="cpu")
|
| 339 |
+
print("[DEBUG] Upsampler pronto.")
|
| 340 |
+
print(f"[DEBUG] _load_models() tempo total={time.perf_counter()-t0:.3f}s")
|
| 341 |
+
return pipeline, latent_upsampler
|
| 342 |
+
|
| 343 |
+
def _promote_fp8_weights_to_bf16(self, module):
|
| 344 |
+
if not isinstance(module, torch.nn.Module):
|
| 345 |
+
print("[DEBUG] Promoção FP8→BF16 ignorada: alvo não é nn.Module.")
|
| 346 |
+
return
|
| 347 |
+
f8 = getattr(torch, "float8_e4m3fn", None)
|
| 348 |
+
if f8 is None:
|
| 349 |
+
print("[DEBUG] torch.float8_e4m3fn indisponível.")
|
| 350 |
+
return
|
| 351 |
+
p_cnt = b_cnt = 0
|
| 352 |
+
for _, p in module.named_parameters(recurse=True):
|
| 353 |
+
try:
|
| 354 |
+
if p.dtype == f8:
|
| 355 |
+
with torch.no_grad():
|
| 356 |
+
p.data = p.data.to(torch.bfloat16); p_cnt += 1
|
| 357 |
+
except Exception:
|
| 358 |
+
pass
|
| 359 |
+
for _, b in module.named_buffers(recurse=True):
|
| 360 |
+
try:
|
| 361 |
+
if hasattr(b, "dtype") and b.dtype == f8:
|
| 362 |
+
b.data = b.data.to(torch.bfloat16); b_cnt += 1
|
| 363 |
+
except Exception:
|
| 364 |
+
pass
|
| 365 |
+
print(f"[DEBUG] FP8→BF16: params_promoted={p_cnt}, buffers_promoted={b_cnt}")
|
| 366 |
+
|
| 367 |
+
def _apply_precision_policy(self):
|
| 368 |
+
prec = str(self.config.get("precision", "")).lower()
|
| 369 |
+
self.runtime_autocast_dtype = torch.float32
|
| 370 |
+
print(f"[DEBUG] Aplicando política de precisão: {prec}")
|
| 371 |
+
if prec == "float8_e4m3fn":
|
| 372 |
+
self.runtime_autocast_dtype = torch.bfloat16
|
| 373 |
+
force_promote = os.getenv("LTXV_FORCE_BF16_ON_FP8", "0") == "1"
|
| 374 |
+
print(f"[DEBUG] FP8 detectado. force_promote={force_promote}")
|
| 375 |
+
if force_promote and hasattr(torch, "float8_e4m3fn"):
|
| 376 |
+
try:
|
| 377 |
+
self._promote_fp8_weights_to_bf16(self.pipeline)
|
| 378 |
+
except Exception as e:
|
| 379 |
+
print(f"[DEBUG] Promoção FP8→BF16 na pipeline falhou: {e}")
|
| 380 |
+
try:
|
| 381 |
+
if self.latent_upsampler:
|
| 382 |
+
self._promote_fp8_weights_to_bf16(self.latent_upsampler)
|
| 383 |
+
except Exception as e:
|
| 384 |
+
print(f"[DEBUG] Promoção FP8→BF16 no upsampler falhou: {e}")
|
| 385 |
+
elif prec == "bfloat16":
|
| 386 |
+
self.runtime_autocast_dtype = torch.bfloat16
|
| 387 |
+
elif prec == "mixed_precision":
|
| 388 |
+
self.runtime_autocast_dtype = torch.float16
|
| 389 |
+
else:
|
| 390 |
+
self.runtime_autocast_dtype = torch.float32
|
| 391 |
+
|
| 392 |
+
def _prepare_conditioning_tensor(self, filepath, height, width, padding_values):
|
| 393 |
+
print(f"[DEBUG] Carregando condicionamento: {filepath}")
|
| 394 |
+
tensor = load_image_to_tensor_with_resize_and_crop(filepath, height, width)
|
| 395 |
+
tensor = torch.nn.functional.pad(tensor, padding_values)
|
| 396 |
+
out = tensor.to(self.device, dtype=self.runtime_autocast_dtype) if self.device == "cuda" else tensor.to(self.device)
|
| 397 |
+
print(f"[DEBUG] Cond shape={tuple(out.shape)} dtype={out.dtype} device={out.device}")
|
| 398 |
+
return out
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def _dividir_latentes_por_tamanho(self, latents_brutos, num_latente_por_chunk: int, overlap: int = 1):
|
| 402 |
+
"""
|
| 403 |
+
Divide o tensor de latentes em chunks com tamanho definido em número de latentes.
|
| 404 |
+
|
| 405 |
+
Args:
|
| 406 |
+
latents_brutos: tensor [B, C, T, H, W]
|
| 407 |
+
num_latente_por_chunk: número de latentes por chunk
|
| 408 |
+
overlap: número de frames que se sobrepõem entre chunks
|
| 409 |
+
|
| 410 |
+
Returns:
|
| 411 |
+
List[tensor]: lista de chunks cloneados
|
| 412 |
+
"""
|
| 413 |
+
sum_latent = latents_brutos.shape[2]
|
| 414 |
+
chunks = []
|
| 415 |
+
|
| 416 |
+
if num_latente_por_chunk >= sum_latent:
|
| 417 |
+
return [latents_brutos]
|
| 418 |
+
|
| 419 |
+
n_chunks = (sum_latent) // num_latente_por_chunk
|
| 420 |
+
steps = sum_latent//n_chunks
|
| 421 |
+
print("================PODA CAUSAL=================")
|
| 422 |
+
print(f"[DEBUG] TOTAL LATENTES = {sum_latent}")
|
| 423 |
+
print(f"[DEBUG] Num LATENTES por chunk = {num_latente_por_chunk}")
|
| 424 |
+
print(f"[DEBUG] Número de chunks = {n_chunks}")
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
|
| 428 |
+
if n_chunks > 1:
|
| 429 |
+
start = 0
|
| 430 |
+
i = 0
|
| 431 |
+
end=1
|
| 432 |
+
while i < n_chunks:
|
| 433 |
+
start += end
|
| 434 |
+
end = start+num_latente_por_chunk
|
| 435 |
+
if end+3>=sum_latent-1:
|
| 436 |
+
end = (sum_latent-1)
|
| 437 |
+
i = n_chunks
|
| 438 |
+
else:
|
| 439 |
+
i += 1
|
| 440 |
+
chunk = latents_brutos[:, :, start-1:end, :, :].clone().detach()
|
| 441 |
+
chunks.append(chunk)
|
| 442 |
+
print(f"[DEBUG] chunk{i}[:, :, {start-1}:{end}, :, :] = {chunk.shape[2]}")
|
| 443 |
+
else:
|
| 444 |
+
print(f"[DEBUG] numero chunks minimo")
|
| 445 |
+
print(f"[DEBUG] latents_brutos[:, :, :, :, :] = {latents_brutos.shape[2]}")
|
| 446 |
+
chunks.append(latents_brutos)
|
| 447 |
+
print("================PODA CAUSAL=================")
|
| 448 |
+
return chunks
|
| 449 |
+
|
| 450 |
+
def _get_total_frames(self, video_path: str) -> int:
|
| 451 |
+
cmd = [
|
| 452 |
+
"ffprobe",
|
| 453 |
+
"-v", "error",
|
| 454 |
+
"-select_streams", "v:0",
|
| 455 |
+
"-count_frames",
|
| 456 |
+
"-show_entries", "stream=nb_read_frames",
|
| 457 |
+
"-of", "default=nokey=1:noprint_wrappers=1",
|
| 458 |
+
video_path
|
| 459 |
+
]
|
| 460 |
+
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
|
| 461 |
+
return int(result.stdout.strip())
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
|
| 465 |
+
def _gerar_lista_com_transicoes(self, pasta: str, video_paths: list[str], crossfade_frames: int = 8) -> list[str]:
|
| 466 |
+
"""
|
| 467 |
+
Gera uma nova lista de vídeos aplicando transições suaves (blend frame a frame)
|
| 468 |
+
seguindo exatamente a lógica linear de Carlos.
|
| 469 |
+
"""
|
| 470 |
+
import os, subprocess, shutil
|
| 471 |
+
|
| 472 |
+
poda = crossfade_frames
|
| 473 |
+
total_partes = len(video_paths)
|
| 474 |
+
video_fade_fim = None
|
| 475 |
+
video_fade_ini = None
|
| 476 |
+
nova_lista = []
|
| 477 |
+
|
| 478 |
+
print("===========CONCATECAO CAUSAL=============")
|
| 479 |
+
|
| 480 |
+
print(f"[DEBUG] Iniciando pipeline com {total_partes} vídeos e {poda} frames de crossfade")
|
| 481 |
+
|
| 482 |
+
for i in range(total_partes):
|
| 483 |
+
base = video_paths[i]
|
| 484 |
+
|
| 485 |
+
# --- PODA ---
|
| 486 |
+
video_podado = os.path.join(pasta, f"{base}_podado_{i}.mp4")
|
| 487 |
+
|
| 488 |
+
|
| 489 |
+
if i<total_partes-1:
|
| 490 |
+
end_frame = self._get_total_frames(base) - poda
|
| 491 |
+
else:
|
| 492 |
+
end_frame = self._get_total_frames(base)
|
| 493 |
+
|
| 494 |
+
if i>0:
|
| 495 |
+
start_frame = poda
|
| 496 |
+
else:
|
| 497 |
+
start_frame = 0
|
| 498 |
+
|
| 499 |
+
cmd_fim = (
|
| 500 |
+
f'ffmpeg -y -hide_banner -loglevel error -i "{base}" '
|
| 501 |
+
f'-vf "trim=start_frame={start_frame}:end_frame={end_frame},setpts=PTS-STARTPTS" '
|
| 502 |
+
f'-an "{video_podado}"'
|
| 503 |
+
)
|
| 504 |
+
subprocess.run(cmd_fim, shell=True, check=True)
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
# --- FADE_INI ---
|
| 508 |
+
if i > 0:
|
| 509 |
+
video_fade_ini = os.path.join(pasta, f"{base}_fade_ini_{i}.mp4")
|
| 510 |
+
cmd_ini = (
|
| 511 |
+
f'ffmpeg -y -hide_banner -loglevel error -i "{base}" '
|
| 512 |
+
f'-vf "trim=end_frame={poda},setpts=PTS-STARTPTS" -an "{video_fade_ini}"'
|
| 513 |
+
)
|
| 514 |
+
subprocess.run(cmd_ini, shell=True, check=True)
|
| 515 |
+
|
| 516 |
+
# --- TRANSIÇÃO ---
|
| 517 |
+
if video_fade_fim and video_fade_ini:
|
| 518 |
+
video_fade = os.path.join(pasta, f"transicao_{i}_{i+1}.mp4")
|
| 519 |
+
cmd_blend = (
|
| 520 |
+
f'ffmpeg -y -hide_banner -loglevel error '
|
| 521 |
+
f'-i "{video_fade_fim}" -i "{video_fade_ini}" '
|
| 522 |
+
f'-filter_complex "[0:v][1:v]blend=all_expr=\'A*(1-T/{poda})+B*(T/{poda})\',format=yuv420p" '
|
| 523 |
+
f'-frames:v {poda} "{video_fade}"'
|
| 524 |
+
)
|
| 525 |
+
subprocess.run(cmd_blend, shell=True, check=True)
|
| 526 |
+
print(f"[DEBUG] transicao adicionada {i}/{i+1} {self._get_total_frames(video_fade)} frames ✅")
|
| 527 |
+
nova_lista.append(video_fade)
|
| 528 |
+
|
| 529 |
+
# --- FADE_FIM ---
|
| 530 |
+
if i<=total_partes-1:
|
| 531 |
+
video_fade_fim = os.path.join(pasta, f"{base}_fade_fim_{i}.mp4")
|
| 532 |
+
cmd_fim = (
|
| 533 |
+
f'ffmpeg -y -hide_banner -loglevel error -i "{base}" '
|
| 534 |
+
f'-vf "trim=start_frame={end_frame-poda},setpts=PTS-STARTPTS" -an "{video_fade_fim}"'
|
| 535 |
+
)
|
| 536 |
+
subprocess.run(cmd_fim, shell=True, check=True)
|
| 537 |
+
|
| 538 |
+
nova_lista.append(video_podado)
|
| 539 |
+
print(f"[DEBUG] Video podado {i+1} adicionado {self._get_total_frames(video_podado)} frames ✅")
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
|
| 543 |
+
print("===========CONCATECAO CAUSAL=============")
|
| 544 |
+
print(f"[DEBUG] {nova_lista}")
|
| 545 |
+
return nova_lista
|
| 546 |
+
|
| 547 |
+
def _concat_mp4s_no_reencode(self, mp4_list: List[str], out_path: str):
|
| 548 |
+
"""
|
| 549 |
+
Concatena múltiplos MP4s sem reencode usando o demuxer do ffmpeg.
|
| 550 |
+
ATENÇÃO: todos os arquivos precisam ter mesmo codec, fps, resolução etc.
|
| 551 |
+
"""
|
| 552 |
+
if not mp4_list or len(mp4_list) < 2:
|
| 553 |
+
raise ValueError("Forneça pelo menos dois arquivos MP4 para concatenar.")
|
| 554 |
+
|
| 555 |
+
|
| 556 |
+
# Cria lista temporária para o ffmpeg
|
| 557 |
+
with tempfile.NamedTemporaryFile("w", delete=False, suffix=".txt") as f:
|
| 558 |
+
for mp4 in mp4_list:
|
| 559 |
+
f.write(f"file '{os.path.abspath(mp4)}'\n")
|
| 560 |
+
list_path = f.name
|
| 561 |
+
|
| 562 |
+
cmd = f"ffmpeg -y -f concat -safe 0 -i {list_path} -c copy {out_path}"
|
| 563 |
+
print(f"[DEBUG] Concat: {cmd}")
|
| 564 |
+
|
| 565 |
+
try:
|
| 566 |
+
subprocess.check_call(shlex.split(cmd))
|
| 567 |
+
finally:
|
| 568 |
+
try:
|
| 569 |
+
os.remove(list_path)
|
| 570 |
+
except Exception:
|
| 571 |
+
pass
|
| 572 |
+
|
| 573 |
+
|
| 574 |
+
def generate(
|
| 575 |
+
self,
|
| 576 |
+
prompt,
|
| 577 |
+
negative_prompt,
|
| 578 |
+
mode="text-to-video",
|
| 579 |
+
start_image_filepath=None,
|
| 580 |
+
middle_image_filepath=None,
|
| 581 |
+
middle_frame_number=None,
|
| 582 |
+
middle_image_weight=1.0,
|
| 583 |
+
end_image_filepath=None,
|
| 584 |
+
end_image_weight=1.0,
|
| 585 |
+
input_video_filepath=None,
|
| 586 |
+
height=512,
|
| 587 |
+
width=704,
|
| 588 |
+
duration=2.0,
|
| 589 |
+
frames_to_use=9,
|
| 590 |
+
seed=42,
|
| 591 |
+
randomize_seed=True,
|
| 592 |
+
guidance_scale=3.0,
|
| 593 |
+
improve_texture=True,
|
| 594 |
+
progress_callback=None,
|
| 595 |
+
# Sempre latent → VAE → MP4 (simples)
|
| 596 |
+
external_decode=True,
|
| 597 |
+
):
|
| 598 |
+
t_all = time.perf_counter()
|
| 599 |
+
print(f"[DEBUG] generate() begin mode={mode} external_decode={external_decode} improve_texture={improve_texture}")
|
| 600 |
+
if self.device == "cuda":
|
| 601 |
+
torch.cuda.empty_cache(); torch.cuda.reset_peak_memory_stats()
|
| 602 |
+
self._log_gpu_memory("Início da Geração")
|
| 603 |
+
|
| 604 |
+
if mode == "image-to-video" and not start_image_filepath:
|
| 605 |
+
raise ValueError("A imagem de início é obrigatória para o modo image-to-video")
|
| 606 |
+
if mode == "video-to-video" and not input_video_filepath:
|
| 607 |
+
raise ValueError("O vídeo de entrada é obrigatório para o modo video-to-video")
|
| 608 |
+
|
| 609 |
+
used_seed = random.randint(0, 2**32 - 1) if randomize_seed else int(seed)
|
| 610 |
+
seed_everething(used_seed); print(f"[DEBUG] Seed usado: {used_seed}")
|
| 611 |
+
|
| 612 |
+
FPS = 24.0; MAX_NUM_FRAMES = 2570
|
| 613 |
+
target_frames_rounded = round(duration * FPS)
|
| 614 |
+
n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
|
| 615 |
+
actual_num_frames = max(9, min(MAX_NUM_FRAMES, int(n_val * 8 + 1)))
|
| 616 |
+
print(f"[DEBUG] Frames alvo: {actual_num_frames} (dur={duration}s @ {FPS}fps)")
|
| 617 |
+
|
| 618 |
+
height_padded = ((height - 1) // 32 + 1) * 32
|
| 619 |
+
width_padded = ((width - 1) // 32 + 1) * 32
|
| 620 |
+
padding_values = calculate_padding(height, width, height_padded, width_padded)
|
| 621 |
+
print(f"[DEBUG] Dimensões: ({height},{width}) -> pad ({height_padded},{width_padded}); padding={padding_values}")
|
| 622 |
+
|
| 623 |
+
generator = torch.Generator(device=self.device).manual_seed(used_seed)
|
| 624 |
+
conditioning_items = []
|
| 625 |
+
|
| 626 |
+
if mode == "image-to-video":
|
| 627 |
+
start_tensor = self._prepare_conditioning_tensor(start_image_filepath, height, width, padding_values)
|
| 628 |
+
conditioning_items.append(ConditioningItem(start_tensor, 0, 1.0))
|
| 629 |
+
if middle_image_filepath and middle_frame_number is not None:
|
| 630 |
+
middle_tensor = self._prepare_conditioning_tensor(middle_image_filepath, height, width, padding_values)
|
| 631 |
+
safe_middle_frame = max(0, min(int(middle_frame_number), actual_num_frames - 1))
|
| 632 |
+
conditioning_items.append(ConditioningItem(middle_tensor, safe_middle_frame, float(middle_image_weight)))
|
| 633 |
+
if end_image_filepath:
|
| 634 |
+
end_tensor = self._prepare_conditioning_tensor(end_image_filepath, height, width, padding_values)
|
| 635 |
+
last_frame_index = actual_num_frames - 1
|
| 636 |
+
conditioning_items.append(ConditioningItem(end_tensor, last_frame_index, float(end_image_weight)))
|
| 637 |
+
print(f"[DEBUG] Conditioning items: {len(conditioning_items)}")
|
| 638 |
+
|
| 639 |
+
# Sempre pedimos latentes (simples)
|
| 640 |
+
call_kwargs = {
|
| 641 |
+
"prompt": prompt,
|
| 642 |
+
"negative_prompt": negative_prompt,
|
| 643 |
+
"height": height_padded,
|
| 644 |
+
"width": width_padded,
|
| 645 |
+
"num_frames": actual_num_frames,
|
| 646 |
+
"frame_rate": int(FPS),
|
| 647 |
+
"generator": generator,
|
| 648 |
+
"output_type": "latent",
|
| 649 |
+
"conditioning_items": conditioning_items if conditioning_items else None,
|
| 650 |
+
"media_items": None,
|
| 651 |
+
"decode_timestep": self.config["decode_timestep"],
|
| 652 |
+
"decode_noise_scale": self.config["decode_noise_scale"],
|
| 653 |
+
"stochastic_sampling": self.config["stochastic_sampling"],
|
| 654 |
+
"image_cond_noise_scale": 0.01,
|
| 655 |
+
"is_video": True,
|
| 656 |
+
"vae_per_channel_normalize": True,
|
| 657 |
+
"mixed_precision": (self.config["precision"] == "mixed_precision"),
|
| 658 |
+
"offload_to_cpu": False,
|
| 659 |
+
"enhance_prompt": False,
|
| 660 |
+
"skip_layer_strategy": SkipLayerStrategy.AttentionValues,
|
| 661 |
+
}
|
| 662 |
+
print(f"[DEBUG] output_type={call_kwargs['output_type']} skip_layer_strategy={call_kwargs['skip_layer_strategy']}")
|
| 663 |
+
|
| 664 |
+
if mode == "video-to-video":
|
| 665 |
+
media = load_media_file(
|
| 666 |
+
media_path=input_video_filepath,
|
| 667 |
+
height=height,
|
| 668 |
+
width=width,
|
| 669 |
+
max_frames=int(frames_to_use),
|
| 670 |
+
padding=padding_values,
|
| 671 |
+
).to(self.device)
|
| 672 |
+
call_kwargs["media_items"] = media
|
| 673 |
+
print(f"[DEBUG] media_items shape={tuple(media.shape)}")
|
| 674 |
+
|
| 675 |
+
latents = None
|
| 676 |
+
multi_scale_pipeline = None
|
| 677 |
+
|
| 678 |
+
try:
|
| 679 |
+
if improve_texture:
|
| 680 |
+
if not self.latent_upsampler:
|
| 681 |
+
raise ValueError("Upscaler espacial não carregado.")
|
| 682 |
+
print("[DEBUG] Multi-escala: construindo pipeline...")
|
| 683 |
+
multi_scale_pipeline = LTXMultiScalePipeline(self.pipeline, self.latent_upsampler)
|
| 684 |
+
first_pass_args = self.config.get("first_pass", {}).copy()
|
| 685 |
+
first_pass_args["guidance_scale"] = float(guidance_scale)
|
| 686 |
+
second_pass_args = self.config.get("second_pass", {}).copy()
|
| 687 |
+
second_pass_args["guidance_scale"] = float(guidance_scale)
|
| 688 |
+
|
| 689 |
+
multi_scale_call_kwargs = call_kwargs.copy()
|
| 690 |
+
multi_scale_call_kwargs.update(
|
| 691 |
+
{
|
| 692 |
+
"downscale_factor": self.config["downscale_factor"],
|
| 693 |
+
"first_pass": first_pass_args,
|
| 694 |
+
"second_pass": second_pass_args,
|
| 695 |
+
}
|
| 696 |
+
)
|
| 697 |
+
print("[DEBUG] Chamando multi_scale_pipeline...")
|
| 698 |
+
t_ms = time.perf_counter()
|
| 699 |
+
ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext()
|
| 700 |
+
with ctx:
|
| 701 |
+
result = multi_scale_pipeline(**multi_scale_call_kwargs)
|
| 702 |
+
print(f"[DEBUG] multi_scale_pipeline tempo={time.perf_counter()-t_ms:.3f}s")
|
| 703 |
+
|
| 704 |
+
if hasattr(result, "latents"):
|
| 705 |
+
latents = result.latents
|
| 706 |
+
elif hasattr(result, "images") and isinstance(result.images, torch.Tensor):
|
| 707 |
+
latents = result.images
|
| 708 |
+
else:
|
| 709 |
+
latents = result
|
| 710 |
+
print(f"[DEBUG] Latentes (multi-escala): shape={tuple(latents.shape)}")
|
| 711 |
+
else:
|
| 712 |
+
single_pass_kwargs = call_kwargs.copy()
|
| 713 |
+
first_pass_config = self.config.get("first_pass", {})
|
| 714 |
+
single_pass_kwargs.update(
|
| 715 |
+
{
|
| 716 |
+
"guidance_scale": float(guidance_scale),
|
| 717 |
+
"stg_scale": first_pass_config.get("stg_scale"),
|
| 718 |
+
"rescaling_scale": first_pass_config.get("rescaling_scale"),
|
| 719 |
+
"skip_block_list": first_pass_config.get("skip_block_list"),
|
| 720 |
+
}
|
| 721 |
+
)
|
| 722 |
+
schedule = first_pass_config.get("timesteps") or first_pass_config.get("guidance_timesteps")
|
| 723 |
+
if mode == "video-to-video":
|
| 724 |
+
schedule = [0.7]; print("[INFO] Modo video-to-video (etapa única): timesteps=[0.7]")
|
| 725 |
+
if isinstance(schedule, (list, tuple)) and len(schedule) > 0:
|
| 726 |
+
single_pass_kwargs["timesteps"] = schedule
|
| 727 |
+
single_pass_kwargs["guidance_timesteps"] = schedule
|
| 728 |
+
print(f"[DEBUG] Single-pass: timesteps_len={len(schedule) if schedule else 0}")
|
| 729 |
+
|
| 730 |
+
print("\n[INFO] Executando pipeline de etapa única...")
|
| 731 |
+
t_sp = time.perf_counter()
|
| 732 |
+
ctx = torch.autocast(device_type="cuda", dtype=self.runtime_autocast_dtype) if self.device == "cuda" else contextlib.nullcontext()
|
| 733 |
+
with ctx:
|
| 734 |
+
result = self.pipeline(**single_pass_kwargs)
|
| 735 |
+
print(f"[DEBUG] single-pass tempo={time.perf_counter()-t_sp:.3f}s")
|
| 736 |
+
|
| 737 |
+
if hasattr(result, "latents"):
|
| 738 |
+
latents = result.latents
|
| 739 |
+
elif hasattr(result, "images") and isinstance(result.images, torch.Tensor):
|
| 740 |
+
latents = result.images
|
| 741 |
+
else:
|
| 742 |
+
latents = result
|
| 743 |
+
print(f"[DEBUG] Latentes (single-pass): shape={tuple(latents.shape)}")
|
| 744 |
+
|
| 745 |
+
# Staging e escrita MP4 (simples: VAE → pixels → MP4)
|
| 746 |
+
|
| 747 |
+
latents_cpu = latents.detach().to("cpu", non_blocking=True)
|
| 748 |
+
torch.cuda.empty_cache()
|
| 749 |
+
try:
|
| 750 |
+
torch.cuda.ipc_collect()
|
| 751 |
+
except Exception:
|
| 752 |
+
pass
|
| 753 |
+
|
| 754 |
+
latents_parts = self._dividir_latentes_por_tamanho(latents_cpu,4,1)
|
| 755 |
+
|
| 756 |
+
temp_dir = tempfile.mkdtemp(prefix="ltxv_"); self._register_tmp_dir(temp_dir)
|
| 757 |
+
results_dir = "/app/output"; os.makedirs(results_dir, exist_ok=True)
|
| 758 |
+
|
| 759 |
+
partes_mp4 = []
|
| 760 |
+
par = 0
|
| 761 |
+
|
| 762 |
+
for latents in latents_parts:
|
| 763 |
+
print(f"[DEBUG] Partição {par}: {tuple(latents.shape)}")
|
| 764 |
+
|
| 765 |
+
par = par + 1
|
| 766 |
+
output_video_path = os.path.join(temp_dir, f"output_{used_seed}_{par}.mp4")
|
| 767 |
+
final_output_path = None
|
| 768 |
+
|
| 769 |
+
print("[DEBUG] Decodificando bloco de latentes com VAE → tensor de pixels...")
|
| 770 |
+
# Usar manager com timestep por item; previne target_shape e rota NoneType.decode
|
| 771 |
+
pixel_tensor = vae_manager_singleton.decode(
|
| 772 |
+
latents.to(self.device, non_blocking=True),
|
| 773 |
+
decode_timestep=float(self.config.get("decode_timestep", 0.05))
|
| 774 |
+
)
|
| 775 |
+
log_tensor_info(pixel_tensor, "Pixel tensor (VAE saída)")
|
| 776 |
+
|
| 777 |
+
print("[DEBUG] Codificando MP4 a partir do tensor de pixels (bloco inteiro)...")
|
| 778 |
+
video_encode_tool_singleton.save_video_from_tensor(
|
| 779 |
+
pixel_tensor,
|
| 780 |
+
output_video_path,
|
| 781 |
+
fps=call_kwargs["frame_rate"],
|
| 782 |
+
progress_callback=progress_callback
|
| 783 |
+
)
|
| 784 |
+
|
| 785 |
+
candidate = os.path.join(results_dir, f"output_par_{par}.mp4")
|
| 786 |
+
try:
|
| 787 |
+
shutil.move(output_video_path, candidate)
|
| 788 |
+
final_output_path = candidate
|
| 789 |
+
print(f"[DEBUG] MP4 parte {par} movido para {final_output_path}")
|
| 790 |
+
partes_mp4.append(final_output_path)
|
| 791 |
+
|
| 792 |
+
except Exception as e:
|
| 793 |
+
final_output_path = output_video_path
|
| 794 |
+
print(f"[DEBUG] Falha no move; usando tmp como final: {e}")
|
| 795 |
+
|
| 796 |
+
total_partes = len(partes_mp4)
|
| 797 |
+
if (total_partes>1):
|
| 798 |
+
final_vid = os.path.join(results_dir, f"concat_fim_{used_seed}.mp4")
|
| 799 |
+
partes_mp4_fade = self._gerar_lista_com_transicoes(pasta=results_dir, video_paths=partes_mp4, crossfade_frames=8)
|
| 800 |
+
self._concat_mp4s_no_reencode(partes_mp4_fade, final_vid)
|
| 801 |
+
else:
|
| 802 |
+
final_vid = partes_mp4[0]
|
| 803 |
+
|
| 804 |
+
|
| 805 |
+
self._log_gpu_memory("Fim da Geração")
|
| 806 |
+
return final_vid, used_seed
|
| 807 |
+
|
| 808 |
+
|
| 809 |
+
except Exception as e:
|
| 810 |
+
print("[DEBUG] EXCEÇÃO NA GERAÇÃO:")
|
| 811 |
+
print("".join(traceback.format_exception(type(e), e, e.__traceback__)))
|
| 812 |
+
raise
|
| 813 |
+
finally:
|
| 814 |
+
try:
|
| 815 |
+
del latents
|
| 816 |
+
except Exception:
|
| 817 |
+
pass
|
| 818 |
+
try:
|
| 819 |
+
del multi_scale_pipeline
|
| 820 |
+
except Exception:
|
| 821 |
+
pass
|
| 822 |
+
|
| 823 |
+
gc.collect()
|
| 824 |
+
try:
|
| 825 |
+
if self.device == "cuda":
|
| 826 |
+
torch.cuda.empty_cache()
|
| 827 |
+
try:
|
| 828 |
+
torch.cuda.ipc_collect()
|
| 829 |
+
except Exception:
|
| 830 |
+
pass
|
| 831 |
+
except Exception as e:
|
| 832 |
+
print(f"[DEBUG] Limpeza GPU no finally falhou: {e}")
|
| 833 |
+
|
| 834 |
+
try:
|
| 835 |
+
self.finalize(keep_paths=[])
|
| 836 |
+
except Exception as e:
|
| 837 |
+
print(f"[DEBUG] finalize() no finally falhou: {e}")
|
| 838 |
+
|
| 839 |
+
print("Criando instância do VideoService. O carregamento do modelo começará agora...")
|
| 840 |
+
video_generation_service = VideoService()
|