|
|
--- |
|
|
language: |
|
|
- en |
|
|
license: apache-2.0 |
|
|
tags: |
|
|
- biencoder |
|
|
- sentence-transformers |
|
|
- text-classification |
|
|
- sentence-pair-classification |
|
|
- semantic-similarity |
|
|
- semantic-search |
|
|
- retrieval |
|
|
- reranking |
|
|
- generated_from_trainer |
|
|
- loss:ArcFaceInBatchLoss |
|
|
base_model: sentence-transformers/all-MiniLM-L6-v2 |
|
|
pipeline_tag: sentence-similarity |
|
|
library_name: sentence-transformers |
|
|
metrics: |
|
|
- cosine_accuracy@1 |
|
|
- cosine_precision@1 |
|
|
- cosine_recall@1 |
|
|
- cosine_ndcg@10 |
|
|
- cosine_mrr@1 |
|
|
- cosine_map@100 |
|
|
- cosine_auc_precision_cache_hit_ratio |
|
|
- cosine_auc_similarity_distribution |
|
|
model-index: |
|
|
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache |
|
|
results: |
|
|
- task: |
|
|
type: custom-information-retrieval |
|
|
name: Custom Information Retrieval |
|
|
dataset: |
|
|
name: test |
|
|
type: test |
|
|
metrics: |
|
|
- type: cosine_accuracy@1 |
|
|
value: 0.5474394601032155 |
|
|
name: Cosine Accuracy@1 |
|
|
- type: cosine_precision@1 |
|
|
value: 0.5474394601032155 |
|
|
name: Cosine Precision@1 |
|
|
- type: cosine_recall@1 |
|
|
value: 0.5284894589479743 |
|
|
name: Cosine Recall@1 |
|
|
- type: cosine_ndcg@10 |
|
|
value: 0.7464232866184599 |
|
|
name: Cosine Ndcg@10 |
|
|
- type: cosine_mrr@1 |
|
|
value: 0.5474394601032155 |
|
|
name: Cosine Mrr@1 |
|
|
- type: cosine_map@100 |
|
|
value: 0.6905199963377163 |
|
|
name: Cosine Map@100 |
|
|
- type: cosine_auc_precision_cache_hit_ratio |
|
|
value: 0.31524254043885996 |
|
|
name: Cosine Auc Precision Cache Hit Ratio |
|
|
- type: cosine_auc_similarity_distribution |
|
|
value: 0.16089488030492544 |
|
|
name: Cosine Auc Similarity Distribution |
|
|
--- |
|
|
|
|
|
# Redis fine-tuned BiEncoder model for semantic caching on LangCache |
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for sentence pair similarity. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** Sentence Transformer |
|
|
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf --> |
|
|
- **Maximum Sequence Length:** 128 tokens |
|
|
- **Output Dimensionality:** 384 dimensions |
|
|
- **Similarity Function:** Cosine Similarity |
|
|
<!-- - **Training Dataset:** Unknown --> |
|
|
- **Language:** en |
|
|
- **License:** apache-2.0 |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'}) |
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
|
|
First install the Sentence Transformers library: |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SentenceTransformer("redis/langcache-embed-v3-mini") |
|
|
# Run inference |
|
|
sentences = [ |
|
|
'The weather is lovely today.', |
|
|
"It's so sunny outside!", |
|
|
'He drove to the stadium.', |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) |
|
|
# [3, 384] |
|
|
|
|
|
# Get the similarity scores for the embeddings |
|
|
similarities = model.similarity(embeddings, embeddings) |
|
|
print(similarities) |
|
|
# tensor([[1.0000, 0.6650, 0.1040], |
|
|
# [0.6650, 1.0000, 0.1401], |
|
|
# [0.1040, 0.1401, 0.9999]]) |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Direct Usage (Transformers) |
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Downstream Usage (Sentence Transformers) |
|
|
|
|
|
You can finetune this model on your own dataset. |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
### Metrics |
|
|
|
|
|
#### Custom Information Retrieval |
|
|
|
|
|
* Dataset: `test` |
|
|
* Evaluated with <code>ir_evaluator.CustomInformationRetrievalEvaluator</code> with these parameters: |
|
|
```json |
|
|
{ |
|
|
"query_prompt": "query:", |
|
|
"corpus_prompt": "query:" |
|
|
} |
|
|
``` |
|
|
|
|
|
| Metric | Value | |
|
|
|:-------------------------------------|:-----------| |
|
|
| cosine_accuracy@1 | 0.5474 | |
|
|
| cosine_precision@1 | 0.5474 | |
|
|
| cosine_recall@1 | 0.5285 | |
|
|
| **cosine_ndcg@10** | **0.7464** | |
|
|
| cosine_mrr@1 | 0.5474 | |
|
|
| cosine_map@100 | 0.6905 | |
|
|
| cosine_auc_precision_cache_hit_ratio | 0.3152 | |
|
|
| cosine_auc_similarity_distribution | 0.1609 | |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Hyperparameters |
|
|
#### Non-Default Hyperparameters |
|
|
|
|
|
- `eval_strategy`: steps |
|
|
- `per_device_train_batch_size`: 64 |
|
|
- `per_device_eval_batch_size`: 64 |
|
|
- `weight_decay`: 0.001 |
|
|
- `adam_beta2`: 0.98 |
|
|
- `adam_epsilon`: 1e-06 |
|
|
- `max_steps`: 100000 |
|
|
- `warmup_ratio`: 0.15 |
|
|
- `bf16`: True |
|
|
- `load_best_model_at_end`: True |
|
|
- `ddp_find_unused_parameters`: False |
|
|
- `push_to_hub`: True |
|
|
- `hub_model_id`: redis/langcache-embed-v3-mini |
|
|
- `eval_on_start`: True |
|
|
- `batch_sampler`: no_duplicates |
|
|
|
|
|
#### All Hyperparameters |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
- `overwrite_output_dir`: False |
|
|
- `do_predict`: False |
|
|
- `eval_strategy`: steps |
|
|
- `prediction_loss_only`: True |
|
|
- `per_device_train_batch_size`: 64 |
|
|
- `per_device_eval_batch_size`: 64 |
|
|
- `per_gpu_train_batch_size`: None |
|
|
- `per_gpu_eval_batch_size`: None |
|
|
- `gradient_accumulation_steps`: 1 |
|
|
- `eval_accumulation_steps`: None |
|
|
- `torch_empty_cache_steps`: None |
|
|
- `learning_rate`: 5e-05 |
|
|
- `weight_decay`: 0.001 |
|
|
- `adam_beta1`: 0.9 |
|
|
- `adam_beta2`: 0.98 |
|
|
- `adam_epsilon`: 1e-06 |
|
|
- `max_grad_norm`: 1.0 |
|
|
- `num_train_epochs`: 3.0 |
|
|
- `max_steps`: 100000 |
|
|
- `lr_scheduler_type`: linear |
|
|
- `lr_scheduler_kwargs`: {} |
|
|
- `warmup_ratio`: 0.15 |
|
|
- `warmup_steps`: 0 |
|
|
- `log_level`: passive |
|
|
- `log_level_replica`: warning |
|
|
- `log_on_each_node`: True |
|
|
- `logging_nan_inf_filter`: True |
|
|
- `save_safetensors`: True |
|
|
- `save_on_each_node`: False |
|
|
- `save_only_model`: False |
|
|
- `restore_callback_states_from_checkpoint`: False |
|
|
- `no_cuda`: False |
|
|
- `use_cpu`: False |
|
|
- `use_mps_device`: False |
|
|
- `seed`: 42 |
|
|
- `data_seed`: None |
|
|
- `jit_mode_eval`: False |
|
|
- `bf16`: True |
|
|
- `fp16`: False |
|
|
- `fp16_opt_level`: O1 |
|
|
- `half_precision_backend`: auto |
|
|
- `bf16_full_eval`: False |
|
|
- `fp16_full_eval`: False |
|
|
- `tf32`: None |
|
|
- `local_rank`: 0 |
|
|
- `ddp_backend`: None |
|
|
- `tpu_num_cores`: None |
|
|
- `tpu_metrics_debug`: False |
|
|
- `debug`: [] |
|
|
- `dataloader_drop_last`: False |
|
|
- `dataloader_num_workers`: 0 |
|
|
- `dataloader_prefetch_factor`: None |
|
|
- `past_index`: -1 |
|
|
- `disable_tqdm`: False |
|
|
- `remove_unused_columns`: True |
|
|
- `label_names`: None |
|
|
- `load_best_model_at_end`: True |
|
|
- `ignore_data_skip`: False |
|
|
- `fsdp`: [] |
|
|
- `fsdp_min_num_params`: 0 |
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
|
- `parallelism_config`: None |
|
|
- `deepspeed`: None |
|
|
- `label_smoothing_factor`: 0.0 |
|
|
- `optim`: adamw_torch_fused |
|
|
- `optim_args`: None |
|
|
- `adafactor`: False |
|
|
- `group_by_length`: False |
|
|
- `length_column_name`: length |
|
|
- `project`: huggingface |
|
|
- `trackio_space_id`: trackio |
|
|
- `ddp_find_unused_parameters`: False |
|
|
- `ddp_bucket_cap_mb`: None |
|
|
- `ddp_broadcast_buffers`: False |
|
|
- `dataloader_pin_memory`: True |
|
|
- `dataloader_persistent_workers`: False |
|
|
- `skip_memory_metrics`: True |
|
|
- `use_legacy_prediction_loop`: False |
|
|
- `push_to_hub`: True |
|
|
- `resume_from_checkpoint`: None |
|
|
- `hub_model_id`: redis/langcache-embed-v3-mini |
|
|
- `hub_strategy`: every_save |
|
|
- `hub_private_repo`: None |
|
|
- `hub_always_push`: False |
|
|
- `hub_revision`: None |
|
|
- `gradient_checkpointing`: False |
|
|
- `gradient_checkpointing_kwargs`: None |
|
|
- `include_inputs_for_metrics`: False |
|
|
- `include_for_metrics`: [] |
|
|
- `eval_do_concat_batches`: True |
|
|
- `fp16_backend`: auto |
|
|
- `push_to_hub_model_id`: None |
|
|
- `push_to_hub_organization`: None |
|
|
- `mp_parameters`: |
|
|
- `auto_find_batch_size`: False |
|
|
- `full_determinism`: False |
|
|
- `torchdynamo`: None |
|
|
- `ray_scope`: last |
|
|
- `ddp_timeout`: 1800 |
|
|
- `torch_compile`: False |
|
|
- `torch_compile_backend`: None |
|
|
- `torch_compile_mode`: None |
|
|
- `include_tokens_per_second`: False |
|
|
- `include_num_input_tokens_seen`: no |
|
|
- `neftune_noise_alpha`: None |
|
|
- `optim_target_modules`: None |
|
|
- `batch_eval_metrics`: False |
|
|
- `eval_on_start`: True |
|
|
- `use_liger_kernel`: False |
|
|
- `liger_kernel_config`: None |
|
|
- `eval_use_gather_object`: False |
|
|
- `average_tokens_across_devices`: True |
|
|
- `prompts`: None |
|
|
- `batch_sampler`: no_duplicates |
|
|
- `multi_dataset_batch_sampler`: proportional |
|
|
- `router_mapping`: {} |
|
|
- `learning_rate_mapping`: {} |
|
|
|
|
|
</details> |
|
|
|
|
|
### Training Logs |
|
|
| Epoch | Step | test_cosine_ndcg@10 | |
|
|
|:-----:|:----:|:-------------------:| |
|
|
| 0 | 0 | 0.7464 | |
|
|
|
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.12.3 |
|
|
- Sentence Transformers: 5.1.1 |
|
|
- Transformers: 4.57.0 |
|
|
- PyTorch: 2.8.0+cu128 |
|
|
- Accelerate: 1.10.1 |
|
|
- Datasets: 4.1.1 |
|
|
- Tokenizers: 0.22.1 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
#### Sentence Transformers |
|
|
```bibtex |
|
|
@inproceedings{reimers-2019-sentence-bert, |
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = "11", |
|
|
year = "2019", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
url = "https://arxiv.org/abs/1908.10084", |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |