Redis fine-tuned BiEncoder model for semantic caching on LangCache
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for sentence pair similarity.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("redis/langcache-embed-v3-mini")
# Run inference
sentences = [
'The weather is lovely today.',
"It's so sunny outside!",
'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.6650, 0.1040],
# [0.6650, 1.0000, 0.1401],
# [0.1040, 0.1401, 0.9999]])
Evaluation
Metrics
Custom Information Retrieval
- Dataset:
test - Evaluated with
ir_evaluator.CustomInformationRetrievalEvaluatorwith these parameters:{ "query_prompt": "query:", "corpus_prompt": "query:" }
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.5474 |
| cosine_precision@1 | 0.5474 |
| cosine_recall@1 | 0.5285 |
| cosine_ndcg@10 | 0.7464 |
| cosine_mrr@1 | 0.5474 |
| cosine_map@100 | 0.6905 |
| cosine_auc_precision_cache_hit_ratio | 0.3152 |
| cosine_auc_similarity_distribution | 0.1609 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 64per_device_eval_batch_size: 64weight_decay: 0.001adam_beta2: 0.98adam_epsilon: 1e-06max_steps: 100000warmup_ratio: 0.15bf16: Trueload_best_model_at_end: Trueddp_find_unused_parameters: Falsepush_to_hub: Truehub_model_id: redis/langcache-embed-v3-minieval_on_start: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 64per_device_eval_batch_size: 64per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.001adam_beta1: 0.9adam_beta2: 0.98adam_epsilon: 1e-06max_grad_norm: 1.0num_train_epochs: 3.0max_steps: 100000lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.15warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Falseddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Trueresume_from_checkpoint: Nonehub_model_id: redis/langcache-embed-v3-minihub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Trueuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | test_cosine_ndcg@10 |
|---|---|---|
| 0 | 0 | 0.7464 |
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.1
- Transformers: 4.57.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.1.1
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 589
Model tree for redis/langcache-embed-v3-mini-experimental
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Cosine Accuracy@1 on testself-reported0.547
- Cosine Precision@1 on testself-reported0.547
- Cosine Recall@1 on testself-reported0.528
- Cosine Ndcg@10 on testself-reported0.746
- Cosine Mrr@1 on testself-reported0.547
- Cosine Map@100 on testself-reported0.691
- Cosine Auc Precision Cache Hit Ratio on testself-reported0.315
- Cosine Auc Similarity Distribution on testself-reported0.161