File size: 13,841 Bytes
8c15c04
18a8b74
 
 
 
 
 
 
 
8c15c04
 
18a8b74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c15c04
18a8b74
8c15c04
18a8b74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c15c04
18a8b74
 
 
8c15c04
18a8b74
8c15c04
 
 
18a8b74
8c15c04
18a8b74
 
 
 
 
8c15c04
18a8b74
 
8c15c04
18a8b74
8c15c04
18a8b74
 
 
 
8c15c04
18a8b74
 
 
 
8c15c04
18a8b74
8c15c04
18a8b74
8c15c04
18a8b74
 
 
 
8c15c04
18a8b74
 
 
 
 
8c15c04
 
 
 
18a8b74
 
8c15c04
18a8b74
8c15c04
18a8b74
 
 
8c15c04
 
18a8b74
 
8c15c04
18a8b74
8c15c04
 
18a8b74
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
---
base_model: google/gemma-3-12b-it
tags:
- transformers
- torchao
- gemma3
license: apache-2.0
language:
- en
---

# QAT INT4 google/gemma-3-12b-it model

- **Developed by:** pytorch
- **License:** apache-2.0
- **Quantized from Model :** google/gemma-3-12b-it
- **Quantization Method :** QAT INT4
- **Terms of Use**: [Terms][terms]

[gemma-3-12b-it](https://huggingface.co/google/gemma-3-12b-it) fine-tuned with [unsloth](https://github.com/unslothai/unsloth) using quantization-aware training (QAT) from [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao), and quantized with int4 weight only quantization, by PyTorch team.
Use it directly or serve using [vLLM](https://docs.vllm.ai/en/latest/) for 66% VRAM reduction (8.34 GB needed) and 1.73x speedup on H100 GPUs.


# Inference with vLLM
Install vllm nightly and torchao nightly to get some recent changes:
```
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
pip install torchao
```

## Serving
Then we can serve with the following command:
```Shell
# Server
export MODEL=pytorch/gemma-3-12b-it-QAT-INT4
VLLM_DISABLE_COMPILE_CACHE=1 vllm serve $MODEL --tokenizer $MODEL -O3
```

```Shell
# Client
curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{
  "model": "pytorch/gemma-3-12b-it-QAT-INT4",
  "messages": [
    {"role": "user", "content": "Give me a short introduction to large language models."}
  ],
  "temperature": 0.6,
  "top_p": 0.95,
  "top_k": 20,
  "max_tokens": 32768
}'
```

Note: please use `VLLM_DISABLE_COMPILE_CACHE=1` to disable compile cache when running this code, e.g. `VLLM_DISABLE_COMPILE_CACHE=1 python example.py`, since there are some issues with the composability of compile in vLLM and torchao,
this is expected be resolved in pytorch 2.8.

# Inference with Transformers

Install the required packages:
```Shell
pip install git+https://github.com/huggingface/transformers@main
pip install torchao
pip install torch
pip install accelerate
```

Example:
```Py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "pytorch/gemma-3-12b-it-QAT-INT4"

# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)

# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

# conduct text completion
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()

# parsing thinking content
try:
    # rindex finding 151668 (</think>)
    index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
    index = 0

thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")

print("thinking content:", thinking_content)
print("content:", content)
```


# Fine-tuning Recipe

Install the required packages:
```Shell
pip install torch
pip install git+https://github.com/huggingface/transformers@main
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu128
pip install unsloth
pip install accelerate
```

Use the following code to fine-tune the model
```Py
# Modeled after https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen3_(14B)-Reasoning-Conversational.ipynb

from unsloth import FastModel
from unsloth.chat_templates import (
    get_chat_template,
    standardize_data_formats,
    standardize_sharegpt,
    train_on_responses_only,
)
from datasets import load_dataset
from trl import SFTConfig, SFTTrainer
import torch


max_seq_length = 2048
dtype = torch.bfloat16


# ==============
#  Model setup |
# ==============

model, tokenizer = FastModel.from_pretrained(
    model_name = "unsloth/gemma-3-12b-it",
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = False,
    full_finetuning = False,
)

model = FastModel.get_peft_model(
    model,
    finetune_vision_layers = False,
    r = 8,
    lora_alpha = 8,
    lora_dropout = 0,
    qat_scheme = "int4",
)

tokenizer = get_chat_template(tokenizer, chat_template="gemma3")


# =============
#  Data setup |
# =============

def format_into_conversation(example):
    choices = ["A", "B", "C", "D"]
    correct_choice = choices[example["answer"]]
    question = "Choose the correct answer for the following question: "
    question += f"{example['question']}\n\n"
    question += "Choices:\n"
    question += f"A. {example['choices'][0]}\n"
    question += f"B. {example['choices'][1]}\n"
    question += f"C. {example['choices'][2]}\n"
    question += f"D. {example['choices'][3]}"
    answer = f"The correct answer is {correct_choice}."
    return {"conversations": [
        {"from": "human", "value": question},
        {"from": "gpt", "value": answer},
    ]}

def formatting_prompts_func(examples):
    convos = examples["conversations"]
    texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False).removeprefix('<bos>') for convo in convos]
    return { "text" : texts, }

dataset = load_dataset("cais/mmlu", "all", split="auxiliary_train")
dataset = dataset.map(format_into_conversation)
dataset = dataset.remove_columns(["question", "subject", "choices", "answer"])
dataset = standardize_data_formats(dataset)
dataset = dataset.map(formatting_prompts_func, batched = True,)


# ========
#  Train |
# ========

trainer = SFTTrainer(
    model = model,
    tokenizer = tokenizer,
    train_dataset = dataset,
    dataset_text_field = "text",
    max_seq_length = max_seq_length,
    packing = False,
    args = SFTConfig(
        per_device_train_batch_size = 32,
        gradient_accumulation_steps = 1,
        warmup_steps = 5,
        num_train_epochs = 1,
        max_steps = 100,
        learning_rate = 2e-5,
        logging_steps = 1,
        optim = "adamw_8bit",
        weight_decay = 0.01,
        lr_scheduler_type = "linear",
        seed = 3407,
        output_dir = "outputs",
        report_to = "none",
    ),
)

trainer = train_on_responses_only(
    trainer,
    instruction_part = "<start_of_turn>user\n",
    response_part = "<start_of_turn>model\n",
)

trainer_stats = trainer.train()
```

# Model Quality
We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model. Here we only run on mmlu for sanity check.

| Benchmark                        |                |                                 |
|----------------------------------|----------------|---------------------------------|
|                                  | mmlu accuracy  | Normalized accuracy degradation | 
| **google/gemma-3-12b-it**        |                |                                 |
| bf16                             | 71.51          | -0%                             |
| int4                             | 69.48          | -100%                           |
| **Fine-tuned without QAT**       |                |                                 |
| bf16                             | 71.55          | +2%                             |   
| int4                             | 69.58          | -95%                            |
| **Fine-tuned with QAT**          |                |                                 |
| int4                             | 70.18          | -65.5%                          |


<details>
<summary> Reproduce Model Quality Results </summary>

## language eval
Need to install lm-eval from source:
https://github.com/EleutherAI/lm-evaluation-harness#install

```Shell
export MODEL=google/gemma-3-12b-it # or pytorch/gemma-3-12b-it-QAT-INT4
lm_eval --model hf --model_args pretrained=$MODEL --tasks mmlu --device cuda:0 --batch_size 8
```

## multi-modal eval
Need to install lmms-eval from source:
`pip install git+https://github.com/EvolvingLMMs-Lab/lmms-eval.git`

```Shell
NUM_PROCESSES=8
MAIN_PORT=12345
MODEL_ID=google/gemma-3-12b-it # or pytorch/gemma-3-12b-it-QAT-INT4
TASKS=chartqa  # or tasks from https://github.com/EvolvingLMMs-Lab/lmms-eval/tree/main/lmms_eval/models/simple
BATCH_SIZE=32
OUTPUT_PATH=./logs/

accelerate launch --num_processes "${NUM_PROCESSES}" --main_process_port "${MAIN_PORT}" -m lmms_eval \
  --model gemma3 \
  --model_args "pretrained=${MODEL_ID}" \
  --tasks "${TASKS}" \
  --batch_size "${BATCH_SIZE}" --output_path "${OUTPUT_PATH}"
```
</details>


# Peak Memory Usage

## Results

| Benchmark        |                         |                                     |
|------------------|-------------------------|-------------------------------------|
|                  | google/gemma-3-12b-it   | pytorch/gemma-3-12b-it-QAT-INT4     |
| Peak Memory (GB) | 24.50                   | 8.34 (66% reduction)                |



<details>
<summary> Reproduce Peak Memory Usage Results </summary>

We can use the following code to get a sense of peak memory usage during inference:

```Py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig

# use "google/gemma-3-12b-it" or "pytorch/gemma-3-12b-it-QAT-INT4"
model_id = "pytorch/gemma-3-12b-it-QAT-INT4"
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_id)

torch.cuda.reset_peak_memory_stats()

prompt = "Hey, are you conscious? Can you talk to me?"
messages = [
    {
        "role": "system",
        "content": "",
    },
    {"role": "user", "content": prompt},
]
templated_prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
print("Prompt:", prompt)
print("Templated prompt:", templated_prompt)
inputs = tokenizer(
    templated_prompt,
    return_tensors="pt",
).to("cuda")
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
output_text = tokenizer.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print("Response:", output_text[0][len(prompt):])

mem = torch.cuda.max_memory_reserved() / 1e9
print(f"Peak Memory Usage: {mem:.02f} GB")
```

</details>



# Model Performance

## Results (H100 machine)
| Benchmark (Latency)              |                         |                                    |
|----------------------------------|-------------------------|------------------------------------|
|                                  | google/gemma-3-12b-it   | pytorch/gemma-3-12b-it-QAT-INT4    |
| latency (batch_size=1)           | 3.73s                   | 2.16s (1.73x speedup)              |

<details>
<summary> Reproduce Model Performance Results </summary>

## Setup

Get vllm source code:
```Shell
git clone [email protected]:vllm-project/vllm.git
```

Install vllm
```
VLLM_USE_PRECOMPILED=1 pip install --editable .
```

Run the benchmarks under `vllm` root folder:

## benchmark_latency

### baseline
```Shell
vllm bench latency --input-len 256 --output-len 256 --model google/gemma-3-12b-it --batch-size 1
```

### INT4
```Shell
VLLM_DISABLE_COMPILE_CACHE=1 vllm bench latency --input-len 256 --output-len 256 --model pytorch/gemma-3-12b-it-QAT-INT4 --batch-size 1
```
</details>




# Paper: TorchAO: PyTorch-Native Training-to-Serving Model Optimization
The model's quantization is powered by **TorchAO**, a framework presented in the paper [TorchAO: PyTorch-Native Training-to-Serving Model Optimization](https://huggingface.co/papers/2507.16099).

**Abstract:** We present TorchAO, a PyTorch-native model optimization framework leveraging quantization and sparsity to provide an end-to-end, training-to-serving workflow for AI models. TorchAO supports a variety of popular model optimization techniques, including FP8 quantized training, quantization-aware training (QAT), post-training quantization (PTQ), and 2:4 sparsity, and leverages a novel tensor subclass abstraction to represent a variety of widely-used, backend agnostic low precision data types, including INT4, INT8, FP8, MXFP4, MXFP6, and MXFP8. TorchAO integrates closely with the broader ecosystem at each step of the model optimization pipeline, from pre-training (TorchTitan) to fine-tuning (TorchTune, Axolotl) to serving (HuggingFace, vLLM, SGLang, ExecuTorch), connecting an otherwise fragmented space in a single, unified workflow. TorchAO has enabled recent launches of the quantized Llama 3.2 1B/3B and LlamaGuard3-8B models and is open-source at this https URL .

# Resources
*   **Official TorchAO GitHub Repository:** [https://github.com/pytorch/ao](https://github.com/pytorch/ao)
*   **TorchAO Documentation:** [https://docs.pytorch.org/ao/stable/index.html](https://docs.pytorch.org/ao/stable/index.html)


# Disclaimer
PyTorch has not performed safety evaluations or red teamed the quantized models. Performance characteristics, outputs, and behaviors may differ from the original models. Users are solely responsible for selecting appropriate use cases, evaluating and mitigating for accuracy, safety, and fairness, ensuring security, and complying with all applicable laws and regulations.

Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the licenses the models are released under, including any limitations of liability or disclaimers of warranties provided therein.


[terms]: https://ai.google.dev/gemma/terms