File size: 13,841 Bytes
			
			| 8c15c04 18a8b74 8c15c04 18a8b74 8c15c04 18a8b74 8c15c04 18a8b74 8c15c04 18a8b74 8c15c04 18a8b74 8c15c04 18a8b74 8c15c04 18a8b74 8c15c04 18a8b74 8c15c04 18a8b74 8c15c04 18a8b74 8c15c04 18a8b74 8c15c04 18a8b74 8c15c04 18a8b74 8c15c04 18a8b74 8c15c04 18a8b74 8c15c04 18a8b74 8c15c04 18a8b74 8c15c04 18a8b74 8c15c04 18a8b74 8c15c04 18a8b74 8c15c04 18a8b74 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 | ---
base_model: google/gemma-3-12b-it
tags:
- transformers
- torchao
- gemma3
license: apache-2.0
language:
- en
---
# QAT INT4 google/gemma-3-12b-it model
- **Developed by:** pytorch
- **License:** apache-2.0
- **Quantized from Model :** google/gemma-3-12b-it
- **Quantization Method :** QAT INT4
- **Terms of Use**: [Terms][terms]
[gemma-3-12b-it](https://huggingface.co/google/gemma-3-12b-it) fine-tuned with [unsloth](https://github.com/unslothai/unsloth) using quantization-aware training (QAT) from [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao), and quantized with int4 weight only quantization, by PyTorch team.
Use it directly or serve using [vLLM](https://docs.vllm.ai/en/latest/) for 66% VRAM reduction (8.34 GB needed) and 1.73x speedup on H100 GPUs.
# Inference with vLLM
Install vllm nightly and torchao nightly to get some recent changes:
```
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
pip install torchao
```
## Serving
Then we can serve with the following command:
```Shell
# Server
export MODEL=pytorch/gemma-3-12b-it-QAT-INT4
VLLM_DISABLE_COMPILE_CACHE=1 vllm serve $MODEL --tokenizer $MODEL -O3
```
```Shell
# Client
curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{
  "model": "pytorch/gemma-3-12b-it-QAT-INT4",
  "messages": [
    {"role": "user", "content": "Give me a short introduction to large language models."}
  ],
  "temperature": 0.6,
  "top_p": 0.95,
  "top_k": 20,
  "max_tokens": 32768
}'
```
Note: please use `VLLM_DISABLE_COMPILE_CACHE=1` to disable compile cache when running this code, e.g. `VLLM_DISABLE_COMPILE_CACHE=1 python example.py`, since there are some issues with the composability of compile in vLLM and torchao,
this is expected be resolved in pytorch 2.8.
# Inference with Transformers
Install the required packages:
```Shell
pip install git+https://github.com/huggingface/transformers@main
pip install torchao
pip install torch
pip install accelerate
```
Example:
```Py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "pytorch/gemma-3-12b-it-QAT-INT4"
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
# prepare the model input
prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
    enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# conduct text completion
generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
    # rindex finding 151668 (</think>)
    index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
    index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
```
# Fine-tuning Recipe
Install the required packages:
```Shell
pip install torch
pip install git+https://github.com/huggingface/transformers@main
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu128
pip install unsloth
pip install accelerate
```
Use the following code to fine-tune the model
```Py
# Modeled after https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen3_(14B)-Reasoning-Conversational.ipynb
from unsloth import FastModel
from unsloth.chat_templates import (
    get_chat_template,
    standardize_data_formats,
    standardize_sharegpt,
    train_on_responses_only,
)
from datasets import load_dataset
from trl import SFTConfig, SFTTrainer
import torch
max_seq_length = 2048
dtype = torch.bfloat16
# ==============
#  Model setup |
# ==============
model, tokenizer = FastModel.from_pretrained(
    model_name = "unsloth/gemma-3-12b-it",
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = False,
    full_finetuning = False,
)
model = FastModel.get_peft_model(
    model,
    finetune_vision_layers = False,
    r = 8,
    lora_alpha = 8,
    lora_dropout = 0,
    qat_scheme = "int4",
)
tokenizer = get_chat_template(tokenizer, chat_template="gemma3")
# =============
#  Data setup |
# =============
def format_into_conversation(example):
    choices = ["A", "B", "C", "D"]
    correct_choice = choices[example["answer"]]
    question = "Choose the correct answer for the following question: "
    question += f"{example['question']}\n\n"
    question += "Choices:\n"
    question += f"A. {example['choices'][0]}\n"
    question += f"B. {example['choices'][1]}\n"
    question += f"C. {example['choices'][2]}\n"
    question += f"D. {example['choices'][3]}"
    answer = f"The correct answer is {correct_choice}."
    return {"conversations": [
        {"from": "human", "value": question},
        {"from": "gpt", "value": answer},
    ]}
def formatting_prompts_func(examples):
    convos = examples["conversations"]
    texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False).removeprefix('<bos>') for convo in convos]
    return { "text" : texts, }
dataset = load_dataset("cais/mmlu", "all", split="auxiliary_train")
dataset = dataset.map(format_into_conversation)
dataset = dataset.remove_columns(["question", "subject", "choices", "answer"])
dataset = standardize_data_formats(dataset)
dataset = dataset.map(formatting_prompts_func, batched = True,)
# ========
#  Train |
# ========
trainer = SFTTrainer(
    model = model,
    tokenizer = tokenizer,
    train_dataset = dataset,
    dataset_text_field = "text",
    max_seq_length = max_seq_length,
    packing = False,
    args = SFTConfig(
        per_device_train_batch_size = 32,
        gradient_accumulation_steps = 1,
        warmup_steps = 5,
        num_train_epochs = 1,
        max_steps = 100,
        learning_rate = 2e-5,
        logging_steps = 1,
        optim = "adamw_8bit",
        weight_decay = 0.01,
        lr_scheduler_type = "linear",
        seed = 3407,
        output_dir = "outputs",
        report_to = "none",
    ),
)
trainer = train_on_responses_only(
    trainer,
    instruction_part = "<start_of_turn>user\n",
    response_part = "<start_of_turn>model\n",
)
trainer_stats = trainer.train()
```
# Model Quality
We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model. Here we only run on mmlu for sanity check.
| Benchmark                        |                |                                 |
|----------------------------------|----------------|---------------------------------|
|                                  | mmlu accuracy  | Normalized accuracy degradation | 
| **google/gemma-3-12b-it**        |                |                                 |
| bf16                             | 71.51          | -0%                             |
| int4                             | 69.48          | -100%                           |
| **Fine-tuned without QAT**       |                |                                 |
| bf16                             | 71.55          | +2%                             |   
| int4                             | 69.58          | -95%                            |
| **Fine-tuned with QAT**          |                |                                 |
| int4                             | 70.18          | -65.5%                          |
<details>
<summary> Reproduce Model Quality Results </summary>
## language eval
Need to install lm-eval from source:
https://github.com/EleutherAI/lm-evaluation-harness#install
```Shell
export MODEL=google/gemma-3-12b-it # or pytorch/gemma-3-12b-it-QAT-INT4
lm_eval --model hf --model_args pretrained=$MODEL --tasks mmlu --device cuda:0 --batch_size 8
```
## multi-modal eval
Need to install lmms-eval from source:
`pip install git+https://github.com/EvolvingLMMs-Lab/lmms-eval.git`
```Shell
NUM_PROCESSES=8
MAIN_PORT=12345
MODEL_ID=google/gemma-3-12b-it # or pytorch/gemma-3-12b-it-QAT-INT4
TASKS=chartqa  # or tasks from https://github.com/EvolvingLMMs-Lab/lmms-eval/tree/main/lmms_eval/models/simple
BATCH_SIZE=32
OUTPUT_PATH=./logs/
accelerate launch --num_processes "${NUM_PROCESSES}" --main_process_port "${MAIN_PORT}" -m lmms_eval \
  --model gemma3 \
  --model_args "pretrained=${MODEL_ID}" \
  --tasks "${TASKS}" \
  --batch_size "${BATCH_SIZE}" --output_path "${OUTPUT_PATH}"
```
</details>
# Peak Memory Usage
## Results
| Benchmark        |                         |                                     |
|------------------|-------------------------|-------------------------------------|
|                  | google/gemma-3-12b-it   | pytorch/gemma-3-12b-it-QAT-INT4     |
| Peak Memory (GB) | 24.50                   | 8.34 (66% reduction)                |
<details>
<summary> Reproduce Peak Memory Usage Results </summary>
We can use the following code to get a sense of peak memory usage during inference:
```Py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
# use "google/gemma-3-12b-it" or "pytorch/gemma-3-12b-it-QAT-INT4"
model_id = "pytorch/gemma-3-12b-it-QAT-INT4"
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_id)
torch.cuda.reset_peak_memory_stats()
prompt = "Hey, are you conscious? Can you talk to me?"
messages = [
    {
        "role": "system",
        "content": "",
    },
    {"role": "user", "content": prompt},
]
templated_prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
print("Prompt:", prompt)
print("Templated prompt:", templated_prompt)
inputs = tokenizer(
    templated_prompt,
    return_tensors="pt",
).to("cuda")
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
output_text = tokenizer.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print("Response:", output_text[0][len(prompt):])
mem = torch.cuda.max_memory_reserved() / 1e9
print(f"Peak Memory Usage: {mem:.02f} GB")
```
</details>
# Model Performance
## Results (H100 machine)
| Benchmark (Latency)              |                         |                                    |
|----------------------------------|-------------------------|------------------------------------|
|                                  | google/gemma-3-12b-it   | pytorch/gemma-3-12b-it-QAT-INT4    |
| latency (batch_size=1)           | 3.73s                   | 2.16s (1.73x speedup)              |
<details>
<summary> Reproduce Model Performance Results </summary>
## Setup
Get vllm source code:
```Shell
git clone [email protected]:vllm-project/vllm.git
```
Install vllm
```
VLLM_USE_PRECOMPILED=1 pip install --editable .
```
Run the benchmarks under `vllm` root folder:
## benchmark_latency
### baseline
```Shell
vllm bench latency --input-len 256 --output-len 256 --model google/gemma-3-12b-it --batch-size 1
```
### INT4
```Shell
VLLM_DISABLE_COMPILE_CACHE=1 vllm bench latency --input-len 256 --output-len 256 --model pytorch/gemma-3-12b-it-QAT-INT4 --batch-size 1
```
</details>
# Paper: TorchAO: PyTorch-Native Training-to-Serving Model Optimization
The model's quantization is powered by **TorchAO**, a framework presented in the paper [TorchAO: PyTorch-Native Training-to-Serving Model Optimization](https://huggingface.co/papers/2507.16099).
**Abstract:** We present TorchAO, a PyTorch-native model optimization framework leveraging quantization and sparsity to provide an end-to-end, training-to-serving workflow for AI models. TorchAO supports a variety of popular model optimization techniques, including FP8 quantized training, quantization-aware training (QAT), post-training quantization (PTQ), and 2:4 sparsity, and leverages a novel tensor subclass abstraction to represent a variety of widely-used, backend agnostic low precision data types, including INT4, INT8, FP8, MXFP4, MXFP6, and MXFP8. TorchAO integrates closely with the broader ecosystem at each step of the model optimization pipeline, from pre-training (TorchTitan) to fine-tuning (TorchTune, Axolotl) to serving (HuggingFace, vLLM, SGLang, ExecuTorch), connecting an otherwise fragmented space in a single, unified workflow. TorchAO has enabled recent launches of the quantized Llama 3.2 1B/3B and LlamaGuard3-8B models and is open-source at this https URL .
# Resources
*   **Official TorchAO GitHub Repository:** [https://github.com/pytorch/ao](https://github.com/pytorch/ao)
*   **TorchAO Documentation:** [https://docs.pytorch.org/ao/stable/index.html](https://docs.pytorch.org/ao/stable/index.html)
# Disclaimer
PyTorch has not performed safety evaluations or red teamed the quantized models. Performance characteristics, outputs, and behaviors may differ from the original models. Users are solely responsible for selecting appropriate use cases, evaluating and mitigating for accuracy, safety, and fairness, ensuring security, and complying with all applicable laws and regulations.
Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the licenses the models are released under, including any limitations of liability or disclaimers of warranties provided therein.
[terms]: https://ai.google.dev/gemma/terms | 
