andrewor14 commited on
Commit
18a8b74
·
verified ·
1 Parent(s): 7132c48

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +376 -169
README.md CHANGED
@@ -1,199 +1,406 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
35
 
36
- ## Uses
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
 
43
 
44
- [More Information Needed]
 
 
 
 
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
 
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ base_model: google/gemma-3-12b-it
3
+ tags:
4
+ - transformers
5
+ - torchao
6
+ - gemma3
7
+ license: apache-2.0
8
+ language:
9
+ - en
10
  ---
11
 
12
+ # QAT INT4 google/gemma-3-12b-it model
13
+
14
+ - **Developed by:** pytorch
15
+ - **License:** apache-2.0
16
+ - **Quantized from Model :** google/gemma-3-12b-it
17
+ - **Quantization Method :** QAT INT4
18
+ - **Terms of Use**: [Terms][terms]
19
+
20
+ [gemma-3-12b-it](https://huggingface.co/google/gemma-3-12b-it) fine-tuned with [unsloth](https://github.com/unslothai/unsloth) using quantization-aware training (QAT) from [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao), and quantized with int4 weight only quantization, by PyTorch team.
21
+ Use it directly or serve using [vLLM](https://docs.vllm.ai/en/latest/) for 66% VRAM reduction (8.34 GB needed) and 1.73x speedup on H100 GPUs.
22
+
23
+
24
+ # Inference with vLLM
25
+ Install vllm nightly and torchao nightly to get some recent changes:
26
+ ```
27
+ pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
28
+ pip install torchao
29
+ ```
30
+
31
+ ## Serving
32
+ Then we can serve with the following command:
33
+ ```Shell
34
+ # Server
35
+ export MODEL=pytorch/gemma-3-12b-it-QAT-INT4
36
+ VLLM_DISABLE_COMPILE_CACHE=1 vllm serve $MODEL --tokenizer $MODEL -O3
37
+ ```
38
+
39
+ ```Shell
40
+ # Client
41
+ curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{
42
+ "model": "pytorch/gemma-3-12b-it-QAT-INT4",
43
+ "messages": [
44
+ {"role": "user", "content": "Give me a short introduction to large language models."}
45
+ ],
46
+ "temperature": 0.6,
47
+ "top_p": 0.95,
48
+ "top_k": 20,
49
+ "max_tokens": 32768
50
+ }'
51
+ ```
52
+
53
+ Note: please use `VLLM_DISABLE_COMPILE_CACHE=1` to disable compile cache when running this code, e.g. `VLLM_DISABLE_COMPILE_CACHE=1 python example.py`, since there are some issues with the composability of compile in vLLM and torchao,
54
+ this is expected be resolved in pytorch 2.8.
55
+
56
+ # Inference with Transformers
57
+
58
+ Install the required packages:
59
+ ```Shell
60
+ pip install git+https://github.com/huggingface/transformers@main
61
+ pip install torchao
62
+ pip install torch
63
+ pip install accelerate
64
+ ```
65
+
66
+ Example:
67
+ ```Py
68
+ import torch
69
+ from transformers import AutoModelForCausalLM, AutoTokenizer
70
+
71
+ model_name = "pytorch/gemma-3-12b-it-QAT-INT4"
72
+
73
+ # load the tokenizer and the model
74
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
75
+ model = AutoModelForCausalLM.from_pretrained(
76
+ model_name,
77
+ torch_dtype="auto",
78
+ device_map="auto"
79
+ )
80
+
81
+ # prepare the model input
82
+ prompt = "Give me a short introduction to large language model."
83
+ messages = [
84
+ {"role": "user", "content": prompt}
85
+ ]
86
+ text = tokenizer.apply_chat_template(
87
+ messages,
88
+ tokenize=False,
89
+ add_generation_prompt=True,
90
+ enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
91
+ )
92
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
93
+
94
+ # conduct text completion
95
+ generated_ids = model.generate(
96
+ **model_inputs,
97
+ max_new_tokens=32768
98
+ )
99
+ output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
100
+
101
+ # parsing thinking content
102
+ try:
103
+ # rindex finding 151668 (</think>)
104
+ index = len(output_ids) - output_ids[::-1].index(151668)
105
+ except ValueError:
106
+ index = 0
107
+
108
+ thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
109
+ content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
110
+
111
+ print("thinking content:", thinking_content)
112
+ print("content:", content)
113
+ ```
114
+
115
+
116
+ # Fine-tuning Recipe
117
+
118
+ Install the required packages:
119
+ ```Shell
120
+ pip install torch
121
+ pip install git+https://github.com/huggingface/transformers@main
122
+ pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu128
123
+ pip install unsloth
124
+ pip install accelerate
125
+ ```
126
+
127
+ Use the following code to fine-tune the model
128
+ ```Py
129
+ # Modeled after https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen3_(14B)-Reasoning-Conversational.ipynb
130
+
131
+ from unsloth import FastModel
132
+ from unsloth.chat_templates import (
133
+ get_chat_template,
134
+ standardize_data_formats,
135
+ standardize_sharegpt,
136
+ train_on_responses_only,
137
+ )
138
+ from datasets import load_dataset
139
+ from trl import SFTConfig, SFTTrainer
140
+ import torch
141
+
142
+
143
+ max_seq_length = 2048
144
+ dtype = torch.bfloat16
145
+
146
+
147
+ # ==============
148
+ # Model setup |
149
+ # ==============
150
+
151
+ model, tokenizer = FastModel.from_pretrained(
152
+ model_name = "unsloth/gemma-3-12b-it",
153
+ max_seq_length = max_seq_length,
154
+ dtype = dtype,
155
+ load_in_4bit = False,
156
+ full_finetuning = False,
157
+ )
158
+
159
+ model = FastModel.get_peft_model(
160
+ model,
161
+ finetune_vision_layers = False,
162
+ r = 8,
163
+ lora_alpha = 8,
164
+ lora_dropout = 0,
165
+ qat_scheme = "int4",
166
+ )
167
+
168
+ tokenizer = get_chat_template(tokenizer, chat_template="gemma3")
169
+
170
+
171
+ # =============
172
+ # Data setup |
173
+ # =============
174
+
175
+ def format_into_conversation(example):
176
+ choices = ["A", "B", "C", "D"]
177
+ correct_choice = choices[example["answer"]]
178
+ question = "Choose the correct answer for the following question: "
179
+ question += f"{example['question']}\n\n"
180
+ question += "Choices:\n"
181
+ question += f"A. {example['choices'][0]}\n"
182
+ question += f"B. {example['choices'][1]}\n"
183
+ question += f"C. {example['choices'][2]}\n"
184
+ question += f"D. {example['choices'][3]}"
185
+ answer = f"The correct answer is {correct_choice}."
186
+ return {"conversations": [
187
+ {"from": "human", "value": question},
188
+ {"from": "gpt", "value": answer},
189
+ ]}
190
+
191
+ def formatting_prompts_func(examples):
192
+ convos = examples["conversations"]
193
+ texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False).removeprefix('<bos>') for convo in convos]
194
+ return { "text" : texts, }
195
+
196
+ dataset = load_dataset("cais/mmlu", "all", split="auxiliary_train")
197
+ dataset = dataset.map(format_into_conversation)
198
+ dataset = dataset.remove_columns(["question", "subject", "choices", "answer"])
199
+ dataset = standardize_data_formats(dataset)
200
+ dataset = dataset.map(formatting_prompts_func, batched = True,)
201
+
202
+
203
+ # ========
204
+ # Train |
205
+ # ========
206
+
207
+ trainer = SFTTrainer(
208
+ model = model,
209
+ tokenizer = tokenizer,
210
+ train_dataset = dataset,
211
+ dataset_text_field = "text",
212
+ max_seq_length = max_seq_length,
213
+ packing = False,
214
+ args = SFTConfig(
215
+ per_device_train_batch_size = 32,
216
+ gradient_accumulation_steps = 1,
217
+ warmup_steps = 5,
218
+ num_train_epochs = 1,
219
+ max_steps = 100,
220
+ learning_rate = 2e-5,
221
+ logging_steps = 1,
222
+ optim = "adamw_8bit",
223
+ weight_decay = 0.01,
224
+ lr_scheduler_type = "linear",
225
+ seed = 3407,
226
+ output_dir = "outputs",
227
+ report_to = "none",
228
+ ),
229
+ )
230
+
231
+ trainer = train_on_responses_only(
232
+ trainer,
233
+ instruction_part = "<start_of_turn>user\n",
234
+ response_part = "<start_of_turn>model\n",
235
+ )
236
+
237
+ trainer_stats = trainer.train()
238
+ ```
239
+
240
+ # Model Quality
241
+ We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model. Here we only run on mmlu for sanity check.
242
+
243
+ | Benchmark | | |
244
+ |----------------------------------|----------------|---------------------------------|
245
+ | | mmlu accuracy | Normalized accuracy degradation |
246
+ | **google/gemma-3-12b-it** | | |
247
+ | bf16 | 71.51 | -0% |
248
+ | int4 | 69.48 | -100% |
249
+ | **Fine-tuned without QAT** | | |
250
+ | bf16 | 71.55 | +2% |
251
+ | int4 | 69.58 | -95% |
252
+ | **Fine-tuned with QAT** | | |
253
+ | int4 | 70.18 | -65.5% |
254
+
255
+
256
+ <details>
257
+ <summary> Reproduce Model Quality Results </summary>
258
+
259
+ ## language eval
260
+ Need to install lm-eval from source:
261
+ https://github.com/EleutherAI/lm-evaluation-harness#install
262
+
263
+ ```Shell
264
+ export MODEL=google/gemma-3-12b-it # or pytorch/gemma-3-12b-it-QAT-INT4
265
+ lm_eval --model hf --model_args pretrained=$MODEL --tasks mmlu --device cuda:0 --batch_size 8
266
+ ```
267
+
268
+ ## multi-modal eval
269
+ Need to install lmms-eval from source:
270
+ `pip install git+https://github.com/EvolvingLMMs-Lab/lmms-eval.git`
271
+
272
+ ```Shell
273
+ NUM_PROCESSES=8
274
+ MAIN_PORT=12345
275
+ MODEL_ID=google/gemma-3-12b-it # or pytorch/gemma-3-12b-it-QAT-INT4
276
+ TASKS=chartqa # or tasks from https://github.com/EvolvingLMMs-Lab/lmms-eval/tree/main/lmms_eval/models/simple
277
+ BATCH_SIZE=32
278
+ OUTPUT_PATH=./logs/
279
+
280
+ accelerate launch --num_processes "${NUM_PROCESSES}" --main_process_port "${MAIN_PORT}" -m lmms_eval \
281
+ --model gemma3 \
282
+ --model_args "pretrained=${MODEL_ID}" \
283
+ --tasks "${TASKS}" \
284
+ --batch_size "${BATCH_SIZE}" --output_path "${OUTPUT_PATH}"
285
+ ```
286
+ </details>
287
+
288
+
289
+ # Peak Memory Usage
290
+
291
+ ## Results
292
+
293
+ | Benchmark | | |
294
+ |------------------|-------------------------|-------------------------------------|
295
+ | | google/gemma-3-12b-it | pytorch/gemma-3-12b-it-QAT-INT4 |
296
+ | Peak Memory (GB) | 24.50 | 8.34 (66% reduction) |
297
+
298
+
299
+
300
+ <details>
301
+ <summary> Reproduce Peak Memory Usage Results </summary>
302
+
303
+ We can use the following code to get a sense of peak memory usage during inference:
304
+
305
+ ```Py
306
+ import torch
307
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
308
+
309
+ # use "google/gemma-3-12b-it" or "pytorch/gemma-3-12b-it-QAT-INT4"
310
+ model_id = "pytorch/gemma-3-12b-it-QAT-INT4"
311
+ quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16)
312
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
313
 
314
+ torch.cuda.reset_peak_memory_stats()
315
 
316
+ prompt = "Hey, are you conscious? Can you talk to me?"
317
+ messages = [
318
+ {
319
+ "role": "system",
320
+ "content": "",
321
+ },
322
+ {"role": "user", "content": prompt},
323
+ ]
324
+ templated_prompt = tokenizer.apply_chat_template(
325
+ messages,
326
+ tokenize=False,
327
+ add_generation_prompt=True,
328
+ )
329
+ print("Prompt:", prompt)
330
+ print("Templated prompt:", templated_prompt)
331
+ inputs = tokenizer(
332
+ templated_prompt,
333
+ return_tensors="pt",
334
+ ).to("cuda")
335
+ generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
336
+ output_text = tokenizer.batch_decode(
337
+ generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
338
+ )
339
+ print("Response:", output_text[0][len(prompt):])
340
 
341
+ mem = torch.cuda.max_memory_reserved() / 1e9
342
+ print(f"Peak Memory Usage: {mem:.02f} GB")
343
+ ```
344
 
345
+ </details>
346
 
 
347
 
 
348
 
349
+ # Model Performance
350
 
351
+ ## Results (H100 machine)
352
+ | Benchmark (Latency) | | |
353
+ |----------------------------------|-------------------------|------------------------------------|
354
+ | | google/gemma-3-12b-it | pytorch/gemma-3-12b-it-QAT-INT4 |
355
+ | latency (batch_size=1) | 3.73s | 2.16s (1.73x speedup) |
 
 
356
 
357
+ <details>
358
+ <summary> Reproduce Model Performance Results </summary>
359
 
360
+ ## Setup
361
 
362
+ Get vllm source code:
363
+ ```Shell
364
+ git clone [email protected]:vllm-project/vllm.git
365
+ ```
366
 
367
+ Install vllm
368
+ ```
369
+ VLLM_USE_PRECOMPILED=1 pip install --editable .
370
+ ```
371
 
372
+ Run the benchmarks under `vllm` root folder:
373
 
374
+ ## benchmark_latency
375
 
376
+ ### baseline
377
+ ```Shell
378
+ vllm bench latency --input-len 256 --output-len 256 --model google/gemma-3-12b-it --batch-size 1
379
+ ```
380
 
381
+ ### INT4
382
+ ```Shell
383
+ VLLM_DISABLE_COMPILE_CACHE=1 vllm bench latency --input-len 256 --output-len 256 --model pytorch/gemma-3-12b-it-QAT-INT4 --batch-size 1
384
+ ```
385
+ </details>
386
 
 
387
 
 
388
 
 
389
 
390
+ # Paper: TorchAO: PyTorch-Native Training-to-Serving Model Optimization
391
+ The model's quantization is powered by **TorchAO**, a framework presented in the paper [TorchAO: PyTorch-Native Training-to-Serving Model Optimization](https://huggingface.co/papers/2507.16099).
392
 
393
+ **Abstract:** We present TorchAO, a PyTorch-native model optimization framework leveraging quantization and sparsity to provide an end-to-end, training-to-serving workflow for AI models. TorchAO supports a variety of popular model optimization techniques, including FP8 quantized training, quantization-aware training (QAT), post-training quantization (PTQ), and 2:4 sparsity, and leverages a novel tensor subclass abstraction to represent a variety of widely-used, backend agnostic low precision data types, including INT4, INT8, FP8, MXFP4, MXFP6, and MXFP8. TorchAO integrates closely with the broader ecosystem at each step of the model optimization pipeline, from pre-training (TorchTitan) to fine-tuning (TorchTune, Axolotl) to serving (HuggingFace, vLLM, SGLang, ExecuTorch), connecting an otherwise fragmented space in a single, unified workflow. TorchAO has enabled recent launches of the quantized Llama 3.2 1B/3B and LlamaGuard3-8B models and is open-source at this https URL .
394
 
395
+ # Resources
396
+ * **Official TorchAO GitHub Repository:** [https://github.com/pytorch/ao](https://github.com/pytorch/ao)
397
+ * **TorchAO Documentation:** [https://docs.pytorch.org/ao/stable/index.html](https://docs.pytorch.org/ao/stable/index.html)
398
 
 
399
 
400
+ # Disclaimer
401
+ PyTorch has not performed safety evaluations or red teamed the quantized models. Performance characteristics, outputs, and behaviors may differ from the original models. Users are solely responsible for selecting appropriate use cases, evaluating and mitigating for accuracy, safety, and fairness, ensuring security, and complying with all applicable laws and regulations.
402
 
403
+ Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the licenses the models are released under, including any limitations of liability or disclaimers of warranties provided therein.
404
 
 
405
 
406
+ [terms]: https://ai.google.dev/gemma/terms