File size: 9,436 Bytes
313bbea 71d3180 313bbea 71d3180 8c10378 2f8ec38 71d3180 2f8ec38 d3e466f 71d3180 8c10378 71d3180 cfb7750 71d3180 313bbea 71d3180 313bbea 71d3180 8c10378 71d3180 313bbea 71d3180 cfb7750 8c10378 71d3180 cfb7750 8c10378 cfb7750 8c10378 6c19590 8c10378 6c19590 71d3180 8c10378 71d3180 6c19590 8c10378 cfb7750 8c10378 cfb7750 8c10378 cfb7750 8c10378 cfb7750 8c10378 cfb7750 8c10378 71d3180 967b6d0 2f8ec38 8c10378 2f8ec38 8c10378 2f8ec38 8c10378 2f8ec38 8c10378 2f8ec38 8c10378 2f8ec38 8c10378 2f8ec38 cfb7750 8c10378 af8b7ea 8c10378 71d3180 8c10378 cfb7750 8c10378 cfb7750 2f8ec38 71d3180 8c10378 313bbea 8c10378 71d3180 e2bbf2a 71d3180 8c10378 71d3180 8c10378 2f8ec38 8c10378 71d3180 313bbea 71d3180 8c10378 71d3180 8c10378 71d3180 2f8ec38 71d3180 313bbea 71d3180 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
---
license: mit
base_model: microsoft/LLM2CLIP-Llama-3.2-1B-Instruct-CC-Finetuned
tags:
- text-embeddings
- sentence-transformers
- llm2vec
- medical
- chest-xray
- radiology
- clinical-nlp
language:
- en
pipeline_tag: feature-extraction
library_name: transformers
---
# LLM2Vec4CXR - Fine-tuned Model for Chest X-ray Report Analysis
LLM2Vec4CXR is a text encoder optimized for chest X-ray report analysis and medical text understanding.
It is introduced in our paper [Exploring the Capabilities of LLM Encoders for Image–Text Retrieval in Chest X-rays](https://arxiv.org/pdf/2509.15234).
## Model Description
LLM2Vec4CXR is a **bidirectional text encoder** fine-tuned with a `latent_attention` pooling strategy.
This design enhances semantic representation of chest X-ray reports, making the model robust across different reporting styles and effective even with domain-specific abbreviations.
It improves performance on clinical text similarity, retrieval, and interpretation tasks.
### Key Features
- **Base Architecture**: LLM2CLIP-Llama-3.2-1B-Instruct
- **Pooling Mode**: Latent Attention (trained weights automatically loaded)
- **Bidirectional Processing**: Enabled for better context understanding
- **Medical Domain**: Specialized for chest X-ray report analysis
- **Max Length**: 512 tokens
- **Precision**: bfloat16
- **Automatic Loading**: Latent attention weights are automatically loaded from safetensors
- **Simple API**: Built-in methods for similarity computation and instruction-based encoding
## Training Details
### Training Data
- Fully fine-tuned on chest X-ray reports and medical text data
- Training focused on understanding pleural effusion status and other chest X-ray findings
### Training Configuration
- **Pooling Mode**: `latent_attention` (modified from base model)
- **Enable Bidirectional**: True
- **Max Length**: 512
- **Torch Dtype**: bfloat16
- **Full Fine-tuning**: All model weights were updated during training
## Usage
### Installation
```bash
# Only transformers is needed!
pip install transformers torch
```
### Basic Usage
```python
import torch
from transformers import AutoModel
# Load the model - that's it!
model = AutoModel.from_pretrained(
"lukeingawesome/llm2vec4cxr",
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda" if torch.cuda.is_available() else "cpu").eval()
# Simple text encoding
report = "Small left pleural effusion with basal atelectasis."
embedding = model.encode_text([report])
print(embedding.shape) # torch.Size([1, 2048])
# Multiple texts at once
reports = [
"No acute cardiopulmonary abnormality.",
"Small bilateral pleural effusions.",
"Large left pleural effusion with compressive atelectasis."
]
embeddings = model.encode_text(reports)
print(embeddings.shape) # torch.Size([3, 2048])
```
### Instruction-Based Encoding and Similarity
```python
import torch
from transformers import AutoModel
# Load model
model = AutoModel.from_pretrained(
"lukeingawesome/llm2vec4cxr",
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda" if torch.cuda.is_available() else "cpu").eval()
# Instruction-based task with separator
instruction = "Determine the status of the pleural effusion."
report = "There is a small increase in the left-sided effusion."
query = instruction + "!@#$%^&*()" + report
# Compare against multiple candidates
candidates = [
"No pleural effusion",
"Pleural effusion present",
"Worsening pleural effusion",
"Improving pleural effusion"
]
# One-line similarity computation
scores = model.compute_similarities(query, candidates)
print(scores)
# tensor([0.7171, 0.8270, 0.9155, 0.8113], device='cuda:0')
best_match = candidates[torch.argmax(scores)]
print(f"Best match: {best_match}")
# Best match: Worsening pleural effusion
```
### Medical Report Retrieval Example
```python
import torch
from transformers import AutoModel
# Load model
model = AutoModel.from_pretrained(
"lukeingawesome/llm2vec4cxr",
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda" if torch.cuda.is_available() else "cpu").eval()
# Instruction for retrieval
instruction = "Retrieve semantically similar reports"
query_report = "Small left pleural effusion with basal atelectasis."
query = instruction + "!@#$%^&*()" + query_report
# Candidate reports
candidates = [
"No acute cardiopulmonary abnormality.",
"Small left pleural effusion is present.",
"Large right pleural effusion causing compressive atelectasis.",
"Heart size is normal with no evidence of pleural effusion.",
]
# Compute similarities
scores = model.compute_similarities(query, candidates)
# Get most similar
best_idx = torch.argmax(scores)
print(f"Most similar: {candidates[best_idx]}")
print(f"Score: {scores[best_idx]:.4f}")
```
## API Reference
The model provides three main methods:
### `encode_text(texts, max_length=512)`
Simple text encoding for one or more texts.
**Parameters:**
- `texts`: List of strings or single string
- `max_length`: Maximum sequence length (default: 512)
**Returns:** Tensor of shape `(batch_size, 2048)`
📄 **Related Papers**:
- [Exploring the Capabilities of LLM Encoders for Image–Text Retrieval in Chest X-rays](https://arxiv.org/pdf/2509.15234)
*Ko, Hanbin, et al. "Exploring the capabilities of LLM encoders for image–text retrieval in chest X-rays." arXiv preprint arXiv:2509.15234 (2025).*
- [LLM2CLIP4CXR](https://github.com/lukeingawesome/llm2clip4cxr): A CLIP-based model that leverages the LLM2Vec encoder to align visual and textual representations of chest X-rays.
**Parameters:**
- `texts`: List of strings with optional separator
- `separator`: String separator (default: `'!@#$%^&*()'`)
- `max_length`: Maximum sequence length (default: 512)
**Returns:** Tensor of shape `(batch_size, 2048)`
The model has been evaluated on chest X-ray report analysis tasks, particularly for:
- Text retrieval/encoder
- Medical text similarity comparison
- Clinical finding extraction
**Parameters:**
- `query_text`: Single query string
- `candidate_texts`: List of candidate strings
- `separator`: String separator (default: `'!@#$%^&*()'`)
- `max_length`: Maximum sequence length (default: 512)
**Returns:** Tensor of shape `(num_candidates,)` with cosine similarity scores
## Training Details
### Training Data
- Fully fine-tuned on chest X-ray reports and medical text data
- Training focused on understanding pleural effusion status and other chest X-ray findings
### Training Configuration
- **Pooling Mode**: `latent_attention` (512 latents, 8 attention heads)
- **Enable Bidirectional**: True
- **Max Length**: 512 tokens
- **Torch Dtype**: bfloat16
- **Full Fine-tuning**: All model weights were updated during training
## Technical Specifications
- **Model Type**: Bidirectional Language Model (LLM2Vec)
- **Architecture**: LlamaBiModel (modified Llama 3.2) + Latent Attention Pooling
- **Parameters**: ~1B parameters
- **Hidden Size**: 2048
- **Input Length**: Up to 512 tokens
- **Output Dimension**: 2048
- **Precision**: bfloat16
- **Dependencies**: Only transformers and torch
## Intended Use
### Primary Use Cases
- **Medical Text Embeddings**: Generate embeddings for chest X-ray reports
- **Clinical Text Similarity**: Compare medical texts for semantic similarity
- **Medical Information Retrieval**: Find relevant medical reports or findings
- **Clinical NLP Research**: Foundation model for medical text analysis
### Limitations
- Specialized for chest X-ray reports - may not generalize to other medical domains
- Requires careful preprocessing for optimal performance
- Should be used as part of a larger clinical decision support system, not for standalone diagnosis
## Evaluation
The model has been evaluated on chest X-ray report analysis tasks, particularly for:
- Text retrieval and encoding
- Medical text similarity comparison
- Clinical finding extraction
### Sample Performance
The model demonstrates consistent improvements over the base LLM2CLIP architecture on medical text understanding benchmarks.
**LLM2Vec4CXR** shows stronger performance in:
- Handling medical abbreviations and radiological terminology
- Capturing fine-grained semantic differences in chest X-ray reports
- Understanding clinical context and temporal changes
## Related Resources
📄 **Paper**: [Exploring the Capabilities of LLM Encoders for Image–Text Retrieval in Chest X-rays](https://arxiv.org/pdf/2509.15234)
🔗 **Related Projects**:
- [LLM2CLIP4CXR](https://github.com/lukeingawesome/llm2clip4cxr): A CLIP-based model that leverages the LLM2Vec encoder to align visual and textual representations of chest X-rays
## Citation
If you use this model in your research, please cite:
```bibtex
@article{ko2025exploring,
title={Exploring the Capabilities of LLM Encoders for Image--Text Retrieval in Chest X-rays},
author={Ko, Hanbin and Cho, Gihun and Baek, Inhyeok and Kim, Donguk and Koo, Joonbeom and Kim, Changi and Lee, Dongheon and Park, Chang Min},
journal={arXiv preprint arXiv:2509.15234},
year={2025}
}
```
## Acknowledgments
This model is built upon:
- [LLM2Vec](https://github.com/McGill-NLP/llm2vec) - Framework for converting decoder-only LLMs into text encoders
- [LLM2CLIP](https://github.com/microsoft/LLM2CLIP) - Microsoft's implementation for connecting LLMs with CLIP models
## License
This model is licensed under the MIT License.
|